Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 679-686    DOI: 10.11901/1005.3093.2021.172
  研究论文 本期目录 | 过刊浏览 |
亚微米Al2O3 对重结晶碳化硅的作用机制
余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继()
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide
YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji()
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
Chao YU, Guangchao XING, Zhengmin WU, Bo DONG, Jun DING, Jinghui DI, Hongxi ZHU, Chengji DENG. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. Chinese Journal of Materials Research, 2022, 36(9): 679-686.

全文: PDF(9252 KB)   HTML
摘要: 

使用不同粒径的SiC和亚微米Al2O3添加剂制备重结晶烧结碳化硅并表征其物相组成、微观形貌、孔径分布和耐压性能,研究了亚微米Al2O3对重结晶碳化硅的作用机制。结果表明,在亚微米Al2O3作用下,重结晶碳化硅的烧结过程可分为液相烧结和重结晶烧结两个阶段。在液相烧结过程中高活性的亚微米Al2O3促进了液相的形成,使SiC的传质方式由扩散传质演变为粘性流动传质。在重结晶烧结温度SiC的传质以蒸发-凝聚为主,形成含铝气相并与SiC固溶促进了6H-SiC向4H-SiC晶型的转变。引入亚微米Al2O3后,重结晶碳化硅材料的孔径分布由单峰分布转变为多峰分布,其中孔径较小的特征峰对应重结晶烧结形成,而较大孔径的特征峰则来源于液相烧结的形成;同时,随着保温时间的延长SiC晶粒生长发育更为完全,由不规则颗粒状转变为较规则六方结构。但是,体积密度的下降、SiC晶粒尺寸不均一以及材料孔径的多峰分布使其耐压强度降低。

关键词 无机非金属材料碳化硅重结晶亚微米Al2O3烧结机理    
Abstract

The recrystallized SiC was prepared via argon atmosphere sintering with SiC of different particle sizes as raw material and submicron Al2O3 as additives, and its phase composition, microstructure, pore size distribution and compression resistance were characterized by means of universal testing machine, X-ray diffractometer, plasma spectrometer, scanning electron microscope and mercury porosimeter. The results show that due to the presence of submicron Al2O3, the sintering process of the recrystallized SiC can be differentiated into two stages: liquid phase sintering and recrystallization sintering. The highly active sub-micron Al2O3 promotes the formation of liquid phase during liquid phase sintering stage, therewith, the mass transfer mode of SiC changed from diffusion to viscous flow. During recrystallization sintering stage, the mass transfer of SiC at high temperature is dominated by evaporation and condensation, forming Al-containing gas phase and solid solution with SiC, which promotes the crystallographic transformation of the recrystallized SiC, i.e., from 6H-SiC to 4H-SiC. After introducing submicron Al2O3, the pore size distribution of recrystallized SiC material changes from unimodal to multimodal, of which, the characteristic peak of small size pores correspond to the course of recrystallization and sintering, whereas, the characteristic peak of large pore size presents the course of liquid phase sintering. At the same time, the SiC grains grow and develop much perfectly with the prolonging of holding time, correspondingly, the SiC grains change from irregular granular to more regular hexagonal structure. However, the decrease of bulk density, the inhomogeneity of SiC grain size and the multi-peak distribution of pore size, so that decrease the compressive strength of the SiC product.

Key wordsinorganic nonmetallic materials    silicon carbide    recrystallization    submicron Al2O3    sintering mechanism
收稿日期: 2021-03-08     
ZTFLH:  TQ174.75  
基金资助:湖北省自然科学基金(2020CFB692);国家自然科学基金联合基金(U20A20239);武汉科技大学国防预研基金(GF201913)
作者简介: 余超,男,1986年生,副教授
SamplesSiC 0.5/μmSiC 20/μmAl2O3Holding time/h
RS0.52080-0.5
RS12080-1
ARS0.520800.50.5
ARS120800.51
表1  试样的编号和原料
图1  试样的热处理升温曲线
图2  试样在2200℃热处理后的XRD谱
SampleSiCMetallic SiMetallic AlC
ARS199.040.110.020.07
表2  试样ARS1的化学成分
图3  试样在2200℃保温0.5 h后断口的微观形貌
图4  试样在2200℃保温1 h后断口的微观形貌
图5  Al2O3-SiO2二元相图
图6  对于不同的α值热处理温度为2200℃时试样中的相变
图7  SiC的晶体结构
图8  在2200℃热处理后试样的孔径分布和累积分布
SampleApparent porosity/%

Bulk density

/g·cm-3

Compressive strength/MPa
RS0.546.41±1.631.67±0.0211.60±0.35
RS148.09±1.841.58±0.0310.64±0.21
ARS0.548.68±2.011.43±0.037.45±0.25
ARS150.81±1.921.51±0.049.09±0.32
表3  在2200℃热处理后试样的物理性能
1 Guo W M. Sintering mechanism and performance improvements of recrystallized silicon carbide [D]. Changsha: Hunan University, 2012
1 郭文明. 再结晶碳化硅烧结机理及其材料性能改进研究 [D]. 长沙: 湖南大学, 2012
2 Li Q S, Zhang Y J, Gong H Y, et al. Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 90
doi: 10.1016/j.pnsc.2016.01.012
3 Zhou X N, Zhang J F, Huang X, et al. Mechanical properties of porous recrystallized SiC ceramics with taliored neck between SiC grains [J]. J. Chin. Ceram. Soc., 2019, 47: 1208
3 周小楠, 张建飞, 黄 鑫 等. 多孔重结晶碳化硅陶瓷的烧结颈结构调控与力学性能 [J]. 硅酸盐学报, 2019, 47: 1208
4 Yu C, Wu Z M, Ding J, et al. Effect of Al4SiC4 additive on the fabrication and characterization of recrystallized SiC honeycomb ceramics [J]. Ceram. Int., 2019, 45: 16612
doi: 10.1016/j.ceramint.2019.05.201
5 Zhang Q L, To S, Zhao Q L, et al. Recrystallization of amorphized Si during micro-grinding of RB-SiC/Si composites [J]. Mater. Lett., 2016, 172: 48
doi: 10.1016/j.matlet.2016.02.027
6 Bao Y W, Wang Y M, Jin Z Z. Creep and stress ageing of Al2O3/SiC multiphase ceramics at high temperature [J]. J. Chin. Ceram. Soc., 2000, 28: 348
6 包亦望, 王毅敏, 金宗哲. Al2O3/SiC复相陶瓷的高温蠕变与持久强度 [J]. 硅酸盐学报, 2000, 28: 348
7 Dai H L, Wang S Q, Zha C J, et al. Study on preparation recrystallization SiC powder by carbon thermal reduction method [J]. J. Ceram., 2002, 23: 192
7 戴红莲, 王思清, 查从济 等. 碳热还原法制备重结晶SiC粉末的研究 [J]. 陶瓷学报, 2002, 23: 192
8 Zhang Y C, Zhou L J, Wu B H, et al. Study on effect of Al2O3/Y2O3 sintering compositive on the sintering properties of SiC honeycomb ceramics [J]. J. Synth. Cryst., 2015, 44: 1330
8 张泳昌, 周立娟, 吴炳辉 等. Al2O3/Y2O3复合助剂对碳化硅蜂窝陶瓷烧结性能的影响研究 [J]. 人工晶体学报, 2015, 44: 1330
9 Zhang Y L, Hu M, Song X G, et al. Effect of sintering additive content on oxidation-resistance behavior of liquid sintered SiC ceramics [J]. Ordn. Mater. Sci. Eng., 2011, 34(1): 47
9 张云龙, 胡 明, 宋晓刚 等. 烧结助剂含量对液相烧结SiC陶瓷抗氧化性的影响 [J]. 兵器材料科学与工程, 2011, 34(1): 47
10 Hong D B, Yin Z B, Yan S Y, et al. Fine grained Al2O3/SiC composite ceramic tool material prepared by two-step microwave sintering [J]. Ceram. Int., 2019, 45: 11826
doi: 10.1016/j.ceramint.2019.03.061
11 Yin Y, Ma B Y, Hu C B, et al. Preparation and properties of porous SiC-Al2O3 ceramics using coal ash [J]. Int. J. Appl. Ceram. Technol., 2019, 16: 23
doi: 10.1111/ijac.13080
12 Yu C, Yuan W J, Zhu H X, et al. Synthesis of Al2O3-SiC composite by carbothermal reuction of calcined bauxite, silica and carbon black [J]. Rare Metal Mat. Eng., 2013, 42(Z1): 634
12 余 超, 员文杰, 祝洪喜 等. 矾土、氧化硅和炭黑碳热还原制备Al2O3-SiC复相陶瓷粉体 [J]. 稀有金属材料与工程, 2013, 42(Z1): 634
13 Ma B Y, Zhu Q, Sun Y, et al. Synthesis of Al2O3-SiC composite and its effect on the properties of low-carbon MgO-C refractories [J]. J. Mater. Sci. Technol., 2010, 26: 715
doi: 10.1016/S1005-0302(10)60112-0
14 Wang Q, Min X, Fang M H, et al. Effect of Al2O3-SiC composite powders additives on properties of taphole clay [J]. Bull. Chin. Ceram. Soc., 2018, 37: 2210
14 王 淇, 闵 鑫, 房明浩 等. 添加Al2O3-SiC复相粉体对高炉用炮泥性能的影响研究 [J]. 硅酸盐通报, 2018, 37: 2210
15 Xu S J, Zhou J G, Yang B, et al. Effect of deposition temperature on the properties of pyrolytic SiC [J]. J. Nucl. Mater., 1995, 224: 12
doi: 10.1016/0022-3115(95)00039-9
16 Liang Y H. Study on the molding and sintering processes of recrystallized SiC porous ceramic [D]. Beijing: Beijing Institute of Technology, 2015
16 梁宇恒. 重结晶SiC多孔陶瓷成型及烧结工艺研究 [D]. 北京: 北京理工大学, 2015
17 Lei H B. Research on oxidation resistance and thermal shock resistance of recrystallized silicon carbide ceramics [D]. Changsha: Hunan University, 2010
17 雷海波. 再结晶碳化硅陶瓷抗氧化及抗热震性能研究 [D]. 长沙: 湖南大学, 2010
18 Li N, Gu H Z, Zhao H Z. Refractory Material Science [M]. Beijing: Metallurgical Industry Press, 2010: 130
18 李 楠, 顾华志, 赵惠忠. 耐火材料学 [M]. 北京: 冶金工业出版社, 2010: 130
19 Liang H Q, Yao X M, Huang Z R, et al. The forming process of liquid phase during liquid phase sintering of SiC ceramic [J]. Mater. Mech. Eng., 2015, 39(2): 34
19 梁汉琴, 姚秀敏, 黄政仁 等. 碳化硅陶瓷液相烧结时的液相生成过程 [J]. 机械工程材料, 2015, 39(2): 34
20 Zhu H X, Deng C J, Bai C, et al. Preparation and application of fired Al2O3-SiC brick with tiny pore and high strength for torpedo [J]. Refractories, 2008, 42: 127
20 祝洪喜, 邓承继, 白 晨 等. 鱼雷罐用微气孔高强度Al2O3-SiC砖的研制与应用 [J]. 耐火材料, 2008, 42: 127
21 Li Y, Li J T, Chen C X, et al. Facile thermal explosion synthesis and optical properties of Al-doped flatted 3C-SiC microcrystals with 4H-SiC quantum interlayers [J]. Appl. Surf. Sci., 2012, 259: 21
doi: 10.1016/j.apsusc.2012.05.133
22 Kuang J L, Cao W B. Stacking faults induced high dielectric permittivity of SiC wires [J]. Appl. Phys. Lett., 2013, 103: 112906
doi: 10.1063/1.4821036
23 Wang K, Zhang Z M, Yu T, et al. The transfer behavior in centrifugal casting of SiCp/Al composites [J]. J. Mater. Process. Technol., 2017, 242: 60
doi: 10.1016/j.jmatprotec.2016.11.019
24 Li Z M, Zhou W C, Su X L, et al. Preparation and characterization of aluminum-doped silicon carbide by combustion synthesis [J]. J. Am. Ceram. Soc., 2008, 91: 2607
doi: 10.1111/j.1551-2916.2008.02526.x
25 Yu C, Cheng K R, Ding J, et al. Synthesis and characterization of Al4O4C nanorod/CNT composites [J]. Ceram. Int., 2017, 43: 11415
doi: 10.1016/j.ceramint.2017.05.352
26 Kuang J L, Jiang P, Ran F Y, et al. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers [J]. J. Alloys Compd., 2016, 687: 227
doi: 10.1016/j.jallcom.2016.06.168
27 Xing G C, Deng C J, Ding J, et al. Fabrication and characterization of AlN-SiC porous composite ceramics by nitridation of Al4SiC4 [J]. Ceram. Int., 2020, 46: 4959
doi: 10.1016/j.ceramint.2019.10.234
28 Zhou W, Cai Z H, Zeng J, et al. Effects of sintering additives on the liquid-phase sintering of SiC [J]. J. Xiamen Univ. (Nat. Sci.), 2006, 45: 530
28 周 伟, 蔡智慧, 曾 军 等. 烧结助剂对SiC液相烧结行为的影响 [J]. 厦门大学学报(自然科学版), 2006, 45: 530
29 Rice R W. Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations [J]. J. Mater. Sci., 1993, 28: 2187
doi: 10.1007/BF00367582
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.