Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 687-698    DOI: 10.11901/1005.3093.2021.466
  研究论文 本期目录 | 过刊浏览 |
近红外反射超疏水黄色涂层的制备和性能
程红杰, 刘黄娟, 姜婷, 王法军(), 李文
江苏理工学院材料工程学院 常州 213001
Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating
CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun(), LI Wen
School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
引用本文:

程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
Hongjie CHENG, Huangjuan LIU, Ting JIANG, Fajun WANG, Wen LI. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. Chinese Journal of Materials Research, 2022, 36(9): 687-698.

全文: PDF(25788 KB)   HTML
摘要: 

将钛铬棕粉末(TCB)、金红石型二氧化钛(TiO2)、疏水纳米二氧化硅(SiO2)与聚二甲基硅氧烷(PDMS)溶液混合,一步刷涂制备出超疏水黄色涂层,系统地研究了涂层的表面润湿性、疏水稳定性、耐紫外线老化性能、自清洁性能、以及近红外反射性能。结果表明,这种涂层的水接触角(CA)和滚动角(SA)分别为155.2°和5.4°;涂层在1.0 kPa的压力下经过2 m距离的砂纸磨损后和5 L的水流冲击后依然保持优异的疏水性,其附着力和硬度分别达到2级和6B等级;不同pH值的溶液在涂层表面都具有超疏水效果并具有化学稳定性;用紫外线照射240 h后涂层表面仍然保持极强的疏水性,表明其具有耐紫外线老化性能;涂层表面具有优异的自清洁性能,污染物极易地被水滴带走;涂层的近红外反射率和太阳反射率分别达到0.858和0.672,对普通水泥板具有明显的降温效果,在户外暴露和水流冲击后仍保持较高的反射率。

关键词 材料表面与界面超疏水涂层聚二甲基硅氧烷近红外反射超疏水稳定性自清洁    
Abstract

The superhydrophobic yellow coating was prepared by mixing titanium chromium brown powder (TCB), rutile titanium dioxide (TiO2), hydrophobic nano silica (SiO2) with polydimethylsiloxane (PDMS) solution and brush coating by one step. The surface wettability, hydrophobic stability, ultraviolet light aging resistance, self-cleaning performance and near-infrared reflection performance of the coating were systematically investigated. The results show that the water contact angle (CA) and roll angle (SA) of the coating are 155.2° and 5.4°, respectively; the coating retains excellent hydrophobicity after sandpaper wear at a distance of 2 m by 1.0 kPa and water impact at a distance of 5 L, meanwhile its adhesion and hardness reach grade 2 and 6B, respectively; the coating surface presents superhydrophobic effect and have chemical stability in solutions of different pH; The coating surface still retains strong hydrophobicity after ultraviolet light irradiation for 240 h, indicating that it has UV aging resistance; the coating surface has excellent self-cleaning performance, and the pollutants are easily carried away by water droplets; the near-infrared reflectance and solar reflectance of the coating are 0.858 and 0.672, respectively. The coating has obvious cooling effect on the ordinary cement board, and still maintains a high reflectance after outdoor exposure and water impact.

Key wordssurface and interface of materials    super hydrophobic coating    polydimethylsiloxane    Near infrared reflection    robust superhydrophobicity    self-cleaning
收稿日期: 2021-08-16     
ZTFLH:  TB34  
基金资助:国家自然科学基金(51801083);江苏省自然科学基金(BK20181044)
作者简介: 程红杰,男,1995,硕士生
图1  疏水纳米SiO2粒子的TEM照片
图2  不同涂层的SEM照片
图3  TCB60-TiO240/PDMS涂层的表面润湿性
图4  TCB60-TiO240/PDMS涂层表面的示意图
图5  砂纸磨损示意图、磨损循环期间的CA和SA、水流冲击示意图以及水流冲击循环期间的CA和SA
图6  TCB60-TiO240/PDMS涂层经过1次和10次砂纸磨后的SEM照片
图7  附着力测试示意图、附着力测试后表面润湿性测试结果、硬度测试示意图和测试结果
图8  pH=1 HCl溶液、pH=7 NaCl溶液和pH=14 NaOH溶液的表面润湿性
图9  紫外线循环照射中涂层表面的CA和SA值、照射0 h和240 h后的涂层表面SEM照片
图10  不同基材的涂层经过10次砂纸磨损后的脱落率和紫外线照射240 h后的CA和SA
图11  不同涂层的光谱反射曲线、室外阳光照射时间对各种涂层表面温度的影响、TCB60-TiO240/PDMS涂层不同存放时间的光谱反射曲线以及水流冲击循环期间的NIR和SOLAR反射率
SamplesProperties
UVVISNIRSOLAR
IOY/PDMS0.0790.3250.6870.501
TCB/PDMS0.1380.4310.9170.669
TCB80-TiO220/PDMS0.1370.470.8850.67
TCB60-TiO240/PDMS0.1460.5080.8580.672
TCB40-TiO260/PDMS0.1510.5760.8520.698
TiO2/PDMS0.0910.9490.8350.847
表2  不同涂层的光谱反射率和太阳反射率值
Number of layers

Thickness

/μm

UVVISNIRSOLAR
164.30.1460.5080.8580.672
2132.60.0660.5020.9140.695
3187.50.0640.4880.9040.683
表3  TCB60-TiO240/PDMS涂层不同厚度的光谱反射率和太阳反射率值
图12  涂层的普通相机和红外相机照片
图13  TCB60-TiO240/PDMS涂层的自清洁性能
1 Akbari H, Matthews H D. Global cooling updates: Reflective roofs and pavements [J]. Energ. Buildings, 2012, 55: 2
doi: 10.1016/j.enbuild.2012.02.055
2 Garshasbi S, Haddad S, Paolini R, et al. Urban mitigation and building adaptation to minimize the future cooling energy needs [J]. Sol. Energy, 2020, 204: 708
doi: 10.1016/j.solener.2020.04.089
3 Chen J, Lu L, Gong Q, et al. Techno-economic and environmental performance assessment of radiative sky cooling-based super-cool roof applications in China [J]. Energ. Convers. Manage., 2021, 245: 114621
doi: 10.1016/j.enconman.2021.114621
4 Jazaeri J, Gordon R L, Alpcan T. Influence of building envelopes, climates, and occupancy patterns on residential HVAC demand [J]. J. Build. Eng., 2018, 22: 33
5 Levinson R, Berdahl P, Akbari H. Solar spectral optical properties of pigments-Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements [J]. Sol. Energ. Mat. Sol. C., 2005, 89(4): 319
doi: 10.1016/j.solmat.2004.11.012
6 Xue X, Qin J, Song J, et al. The methods for creating energy efficient cool gray building coatings-Part I: Preparation from white and black pigments [J]. Sol. Energ. Mat. Sol. C., 2014, 130: 587
doi: 10.1016/j.solmat.2014.07.044
7 Jiang L, Xue X, Qu J, et al. The methods for creating energy efficient cool gray building coatings-Part II: Preparation from pigments of complementary colors and titanium dioxide rutile [J]. Sol. Energ. Mat. Sol. C., 2014, 130: 410
doi: 10.1016/j.solmat.2014.07.043
8 Song Z, Zhang W, Shi Y, et al. Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency [J]. Energ. Buildings, 2013, 63: 49
doi: 10.1016/j.enbuild.2013.03.051
9 Zhang W, Song Z, Shi Y, et al. The effects of manufacturing processes and artificial accelerated weathering on the solar reflectance and cooling effect of cool roof coatings [J]. Sol. Energ. Mat. Sol. C., 2013, 118: 61
doi: 10.1016/j.solmat.2013.07.039
10 Berdahl P, Akbari H, Levinson R, et al. Weathering of roofing materials-an overview [J]. Constr. Build. Mater., 2008, 22 (4): 423
doi: 10.1016/j.conbuildmat.2006.10.015
11 Wang G, Li A, Li K, et al. A fluorine-free superhydrophobic silicone rubber surface has excellent self-cleaning and bouncing properties [J]. J. Colloid Interf. Sci., 2020, 588: 175
doi: 10.1016/j.jcis.2020.12.059
12 Shan X, Wang J H, Zhang K, et al. Microstructure and properties of superhydrophobic surfaces of HDPE/EPDM thermoplastic vulcanizate [J]. Special Purpose Rubber Products, 2021, 42(4): 2
12 单 秀, 王君豪, 张 凯 等. 超疏水HDPE/EPDM TPV表面的结构与性能 [J]. 特种橡胶制品, 2021, 42(4): 2
13 Gao Y L, Li X K, Dai K M, et al. Anti-icng technology and effectiveness evaluation of super-hydrophobic bionic cement concrete pavement [J]. M. R., 2017, 31(014): 132
13 高英力, 李学坤, 代凯明 等. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价 [J]. 材料导报, 2017, 31(014): 132
14 Yi Z D, Liao M R, Kang F, et al. Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate [J]. Acta Mater. Compos. Sin., 2021, 38(9): 3035
14 易泽德, 廖木荣, 康 帆 等. 甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征 [J]. 复合材料学报, 2021, 38(9): 3035
15 Siddiqui A R, Li W, Wang F, et al. One-step fabrication of transparent superhydrophobic surface [J]. Appl. Surf. Sci., 2021, 542: 148534
doi: 10.1016/j.apsusc.2020.148534
16 Wang F, Xie T, Ou J, et al. Cement based superhydrophobic coating with excellent robustness and solar reflective ability [J]. J. Alloy. Compd., 2020, 823: 1538
17 Zhu C, Lv J, Chen L, et al. Dark, heat-reflective, anti-ice rain and superhydrophobic cement concrete surfaces [J]. Constr. Build. Mater., 2019, 220: 21
doi: 10.1016/j.conbuildmat.2019.05.188
18 Qi Y, Yang Z, Huang W, et al. Robust superhydrophobic surface for anti-icing and cooling performance: Application of fluorine-modified TiO2 and fumed SiO2 [J]. Appl. Surf. Sci., 2021, 538:148131
doi: 10.1016/j.apsusc.2020.148131
19 Xue X, Yang Z, Li Y, et al. Superhydrophobic self-cleaning solar reflective orange-gray paint coating [J]. Sol. Energ. Mat. Sol. C., 2018, 174: 292
doi: 10.1016/j.solmat.2017.09.014
20 Yang Z, Xue X, Dai J G, et al. Study of a super-non-wetting self-cleaning solar reflective blue-grey paint coating with luminescence [J]. Sol. Energ. Mat. Sol. C., 2018, 176: 69
doi: 10.1016/j.solmat.2017.11.035
21 Shi S, Lei B, Li M, et al. Thermal decomposition behavior of a thermal protection coating composite with silicone rubber: Experiment and modeling [J]. Prog. Org. Coat., 2020, 143: 105609
22 Zhang M, Li S J, Li X P, et al. Preparation of organosilicone anti-wear coating on PDMS membrane [J]. Mater. Prot., 2021, 54(2): 98
22 张 敏, 李松晶, 李孝平 等. PDMS薄膜表面有机硅耐磨涂层的制备研究 [J]. 材料保护, 2021, 54(2): 98
23 Latifi A, Imani M, Khorasani M T, et al. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate [J]. Appl. Surf. Sci, 2014, 320: 471
doi: 10.1016/j.apsusc.2014.09.084
24 Zeng G X, Yang J K, Li F, et al. Preparation and properties of chrome antimony titanium buff rutile-clad hollow glass microspheres as composite pigment [J]. Electroplat. & Finishing, 2017, 36(10): 510
24 曾国勋, 杨建坤, 李 风 等. 钛铬棕包覆空心玻璃微珠复合颜料的制备及性能 [J]. 电镀与涂饰, 2017, 36(10): 510
25 Yang G, Deng A Z, Chen J B. Preparation and properties of medium-brightness energy-efficient coatings for building [J]. Electroplat. & Finishing, 2017, 36(6): 301
25 杨 光, 邓安仲, 陈静波. 中明度建筑节能涂层的制备及性能 [J]. 电镀与涂饰, 2017, 36(6): 301
26 ASTME1175-87(2015),Standard test method for determining solar or photopic reflectance, transmittance, and absorptance of materials using a large diameter integrating sphere[S].
27 GB/T 37361-2019, Determination of the film thickness–Ultrasonic thickness gauge method[S].
27 GB/T 37361-2019, 漆膜厚度的测定超声波测厚仪法[S].
28 GB/T 9286-1998, Paints and varnishes–Cross cut test for films[S].
28 GB/T 9286-1998, 色漆和清漆 漆膜的划格试验[S].
29 GB/T 6739-2006, Paints and varnishes–Determination of film hardness by pencil test[S].
29 GB/T 6739-2006, 色漆和清漆 铅笔法测定漆膜硬度[S].
30 Li K, Zeng X, Li H, et al. Study on the wetting behavior and theoretical models of polydimethylsiloxane/silica coating [J]. Appl. Surf. Sci, 2013, 279(15): 458
doi: 10.1016/j.apsusc.2013.04.137
31 Qi W D, Xu S J, Xu Z L, et al. Preparation of superhydrophobic PDMS/PVDF nanofiber membrance and its phenol separation performance [J]. Membrane Science and Technology, 2021, 41(1): 11
31 齐炜东, 徐孙杰, 许振良 等. 超疏水PDMS/PVDF纳米纤维膜制备及其苯酚分离性能 [J]. 膜科学与技术, 2021, 41(1): 11
32 Ji Z, Liu Y, Du F. Rational design of superhydrophobic, transparent hybrid coating with superior durability [J]. Prog. Org. Coat., 2021, 157: 106294.
33 Li Y, Wang X Y, Xu J C. Study on simple preparation and performance of industrial superhydrophobic TiO2 coating [J]. Nonferrous Metal Materials and Engineering, 2021, 42(3): 24
33 李 洋, 王现英, 徐京城. 工业化超疏水TiO2涂层的简易制备和性能研究 [J]. 有色金属材料与工程, 2021, 42(3): 24
34 Zhang M, Ma L, Wang Q, et al. Wettability behavior of nanodroplets on copper surfaces with hierarchical nanostructures [J]. Colloid. Surface. A., 2020, 604: 125291
doi: 10.1016/j.colsurfa.2020.125291
35 Gong X, Zhang L, He S, et al. Rewritable superhydrophobic coatings fabricated using water-soluble polyvinyl alcohol [J]. Mater. Design, 2020, 196: 109112
36 Tu K, Wang X, Kong L, et al. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood [J]. Mater. Design, 2018, 140: 30
37 Nine M J, Cole M A, Johnson L, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties [J]. Acs Appl. Mater. Inter., 2015, 7(51): 28482
doi: 10.1021/acsami.5b09611
38 Zang D L, Wei E Z, Jing H, et al. Construction of super-hydrophobic structure on surface of super ferritic stainless steel B44660 and its corrosion resistance [J]. Chin. J. Mater. Res., 2021, 35(1): 7
doi: 10.11901/1005.3093.2020.154
38 张大磊, 魏恩泽, 荆 赫 等. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能 [J]. 材料研究学报, 2021, 35(1): 7
doi: 10.11901/1005.3093.2020.154
39 Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. Mater. Res., 2018, 032(011): 801
39 翁天宇, 赖德林, 李晓聪 等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 032(011): 801
40 Zhu T, Cheng Y, Huang J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning [J]. Chem. Eng. J., 2020, 399: 125746
doi: 10.1016/j.cej.2020.125746
41 Lan Y, Lu Y, Ren Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications [J]. Nano Energy, 2013, 2(5): 1031
doi: 10.1016/j.nanoen.2013.04.002
42 JG/T 235-2014, Architectural reflective thermal insulation coating[S].
42 JG/T 235-2014, 建筑反射隔热涂料 [S].
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[14] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] 刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.