Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 392-400    DOI: 10.11901/1005.3093.2021.139
  研究论文 本期目录 | 过刊浏览 |
g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解
谭冲1, 李媛媛1, 王欢欢1, 李俊生2, 夏至2, 左金龙2(), 姚琳3
1.哈尔滨商业大学药学院(药物工程技术研究中心) 哈尔滨 150076
2.哈尔滨商业大学食品工程学院 哈尔滨 150076
3.哈尔滨师范大学生命科学与技术学院 哈尔滨 150025
Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine
TAN Chong1, LI Yuanyuan1, WANG Huanhuan1, LI Junsheng2, XIA Zhi2, ZUO Jinlong2(), YAO Lin3
1.School of Pharmacy (Pharmaceutical Engineering Technology Research Center), Harbin University of Commerce, Harbin 150076, China
2.School of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
3.College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
引用本文:

谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.
Chong TAN, Yuanyuan LI, Huanhuan WANG, Junsheng LI, Zhi XIA, Jinlong ZUO, Lin YAO. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. Chinese Journal of Materials Research, 2022, 36(5): 392-400.

全文: PDF(5788 KB)   HTML
摘要: 

采用阳极氧化法制备二氧化钛纳米管(TiO2 NTs),然后在紫外光和微波辅助下引入Ag、g-C3N4制备出g-C3N4/Ag/TiO2 NTs三元复合光催化材料。用扫描电镜(SEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis)、光致发光(PL)等手段对g-C3N4/Ag/TiO2 NTs进行表征,研究了这种材料对西维因的降解性能。结果表明,在模拟太阳光照射下,g-C3N4/Ag/TiO2 NTs对西维因的降解率由TiO2 NTs的29.1%提高到51.8%。光催化活性的提高,与Ag表面等离子体共振效应、Ag优异的电荷传导性以及g-C3N4与TiO2 NTs界面的异质结有关。

关键词 无机非金属材料TiO2Agg-C3N4西维因光催化    
Abstract

Titanium oxide nano-tubes (TiO2 NTs) were firstly prepared by anodic oxidation method, and then Ag and carbonitride g-C3N4 were deposited onto TiO2 NTs under the synergistic action of ultraviolet irradiation and microwave heating to prepare the ternary composite photocatalyst g-C3N4/Ag/TiO2 NTs. Then the prepared composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV Vis diffuse reflectance spectroscopy (UV-Vis) and photoluminescence spectroscopy (PL).The results show that the composite of g-C3N4/Ag/TiO2 NTs presents a higher degradation rate of 51.8% for the carbaryl under the simulated sunlight, in the contrast, that of the simple TiO2 NTs is 29.1% only. The improvement of photocatalytic activity is related to the combined effect of the surface plasmon resonance effect of Ag, the excellent charge conductivity of Ag and the formation of heterojunction between g-C3N4 and TiO2 NTs.

Key wordsinorganic nonmetallic materials    TiO2    Ag    g-C3N4    carbaryl    photocatalysis
收稿日期: 2021-02-07     
ZTFLH:  X703  
基金资助:黑龙江省自然科学基金(QC2018021)
作者简介: 谭冲,男,1980年生,博士
图1  g-C3N4 、TiO2 NTs、Ag/TiO2 NTs 和g-C3N4/Ag/TiO2 NTs样品的XRD谱
图2  g-C3N4、TiO2 NTs、Ag/TiO2 NTs和g-C3N4/Ag/TiO2 NTs的SEM照片
图3  g-C3N4/Ag/TiO2 NTs的TEM照片
图4  g-C3N4/Ag/TiO2 NTs EDS的能谱和元素分布
图5  TiO2 NTs和g-C3N4/Ag/TiO2 NTs的XPS全谱(a)和O 1s(b)、Ti 2p(c)、Ag 3d(d)、C 1s(e)和N 1s(f)的高分辨谱
图6  TiO2 NTs、Ag/TiO2 NTs和g-C3N4/Ag/TiO2 NTs的UV-Vis DRS光谱和光学带隙
图7  TiO2 NTs、Ag/TiO2 NTs和g-C3N4/Ag/TiO2 NTs对西维因的降解曲线和动力学分析
SamplekR2
TiO2 NTs0.0410.9898
Ag/TiO2 NTs0.0850.9841
g-C3N4/Ag/TiO2 NTs0.01720.9834
表1  TiO2 NTs、Ag/TiO2 NTs和g-C3N4/Ag/TiO2 NTs的光催化降解动力学参数
图8  催化剂的光催化性能与使用次数的关系
图9  TiO2 NTs、Ag/TiO2 NTs和g-C3N4/Ag/TiO2 NTs的光致发光谱
图10  自由基的清除率
图11  光催化机理
图12  西维因的标准品色谱、色谱和降解产物质谱
图13  西维因的降解路径和水解路径
1 Ruengprapavut S, Sophonnithiprasert T, Pongpoungphet N. The effectiveness of chemical solutions on the removal of carbaryl residues from cucumber and chili presoaked in carbaryl using the HPLC technique [J]. Food Chem., 2019, 30: 125659
2 Şolpan D, Ibrahim K E A, Torun M, et al. The effect of ozonation on the degradation of carbaryl in aqueous solution [J]. J. Environ. Sci. Health, 2020, 55B: 929
3 Wu P, Chen Z B, Zhang Y, et al. RETRACTED: carbaryl waste-water treatment by Rhodopseudomonas sphaeroides [J]. Chemosphere, 2019, 233: 597
doi: 10.1016/j.chemosphere.2019.05.237
4 Wu P, Xie L Y, Mo W T, et al. The biodegradation of carbaryl in soil with Rhodopseudomonas capsulata in wastewater treatment effluent [J]. J. Environ. Manag., 2019, 249: 109226
doi: 10.1016/j.jenvman.2019.06.127
5 Zhang P, Wu J Y, Li L, et al. Sorption and catalytic hydrolysis of carbaryl on pig-manure-derived biochars [J]. J. Agro-Environ. Sci., 2012, 31: 416
5 张 鹏, 武健羽, 李 力 等. 猪粪制备的生物炭对西维因的吸附与催化水解作用 [J]. 农业环境科学学报, 2012, 31: 416
6 Su Z, Hu K D, Zhu J W, et al. Environmental conditions of carbaryl degradation by bacillus licheniformis B-1 [J]. Jiangsu J. Agr. Sci., 2018, 34: 585
6 苏 赵, 胡凯弟, 朱佳雯 等. 地衣芽孢杆菌B-1降解西维因的环境条件 [J]. 江苏农业学报, 2018, 34: 585
7 Yurdakal S, Tek B S, Değirmenci Ç, et al. Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, Au, Pd and Ag loaded TiO2 catalysts [J]. Catal. Today, 2017, 281: 53
doi: 10.1016/j.cattod.2016.05.054
8 Ali A, Shoeb M, Li Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation [J]. J. Mol. Liq., 2021, 324: 114696
doi: 10.1016/j.molliq.2020.114696
9 Chen Z S, Liang X P, Fan X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 515
9 陈子尚, 梁小平, 樊小伟 等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 515
doi: 10.11901/1005.3093.2018.588
10 Yurdakal S, Yanar Ş Ö, Çetinkaya S, et al. Green photocatalytic synthesis of vitamin B3 by Pt loaded TiO2 photocatalysts [J]. Appl. Catal., 2017, 202B: 500
11 Liang H J, Jia Z C, Zhang H C, et al. Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B [J]. Appl. Surf. Sci., 2017, 422: 1
doi: 10.1016/j.apsusc.2017.05.211
12 Zhu Y P, Zhu R L, Yan L X, et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite [J]. Appl. Catal., 2018, 239B: 280
13 Huang B T, Xiao L L, Dong H F, et al. Electrochemical sensing platform based on molecularly imprinted polymer decorated N,S co-doped activated graphene for ultrasensitive and selective determination of cyclophosphamide [J]. Talanta, 2017, 164: 601
doi: 10.1016/j.talanta.2016.11.009
14 Zhu X D, Wang J, Ma Y, et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34: 770
14 朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34: 770
doi: 10.11901/1005.3093.2020.132
15 Kong J H, Song C X, Zhang W, et al. Enhanced visible-light-active photocatalytic performances on Ag nanoparticles sensitized TiO2 nanotube arrays [J]. Superlattices Microstruct., 2017, 109: 579
doi: 10.1016/j.spmi.2017.05.050
16 Sun Y, Gao Y, Zeng J Y, et al. Enhancing visible-light photocatalytic activity of Ag-TiO2 nanowire composites by one-step hydrothermal process [J]. Mater. Lett., 2020, 279: 128506
doi: 10.1016/j.matlet.2020.128506
17 Zhu Z, Lu Z Y, Wang D D, et al. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity [J]. Appl. Catal., 2016, 182B: 115
18 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35: 135
18 彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35: 135
doi: 10.11901/1005.3093.2020.333
19 Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34: 921
19 孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34: 921
20 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35: 135
20 彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35: 135
doi: 10.11901/1005.3093.2020.333
21 Cui Z K, Mi L W, Fa W J, et al. Preparation and photocatalytic performance of Pt/BiOCl nanostructures [J]. Chin. J. Mater. Res., 2013, 27: 583
21 崔占奎, 米立伟, 法文君 等. Pt/BiOCl纳米结构的制备及其光催化性能 [J]. 材料研究学报, 2013, 27: 583
22 Tian T. The research of silver-loading, photoelectric and antibacterial properties of TiO2 nanotube arrays [D]. Xi'an: Northwestern Polytechnical University, 2016
22 田 甜. TiO2纳米管阵列的银负载、光电及抗菌性能研究 [D]. 西安: 西北工业大学, 2016
23 Mou H Y, Song C X, Zhou Y H, et al. Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution [J]. Appl. Catal., 2018, 221B: 565.
24 Zada A, Ali N, Subhan F, et al. Suitable energy platform significantly improves charge separation of g-C3N4 for CO2 reduction and pollutant oxidation under visible-light [J]. Prog. Nat. Sci., 2019, 29: 138
doi: 10.1016/j.pnsc.2019.03.004
25 Sun M Q, Shen S L, Wu Z J, et al. Rice spike-like g-C3N4/TiO2 heterojunctions with tight-binding interface by using sodium titanate ultralong nanotube as precursor and template [J]. Ceram. Int., 2018, 44: 8125
doi: 10.1016/j.ceramint.2018.01.257
26 Troppová I, Šihor M, Reli M, et al. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide [J]. Appl. Surf. Sci., 2018, 430: 335
doi: 10.1016/j.apsusc.2017.06.299
27 Qi F, An W J, Wang H, et al. Combing oxygen vacancies on TiO2 nanorod arrays with g-C3N4 nanosheets for enhancing photoelectrochemical degradation of phenol [J]. Mater. Sci. Semicond. Process., 2020, 109: 104954
doi: 10.1016/j.mssp.2020.104954
28 Li Y N, Chen Z Y, Wang M Q, et al. Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants [J]. Appl. Surf. Sci., 2018, 440: 229
doi: 10.1016/j.apsusc.2018.01.106
29 Tahir M. Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light [J]. J. CO2 Utilizat., 2020, 37: 134
30 Liu C, Dong S S, Chen Y G. Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact [J]. Chem. Eng. J., 2019, 371: 706
doi: 10.1016/j.cej.2019.04.089
31 Hu J J, Ma C Y, Wang J L, et al. Preparation and photocatalytic properties of GO/TiO2-g-C3N4 nanocomposites [J]. Chin. J. Inorg. Chem., 2020, 36: 2240
31 胡金娟, 马春雨, 王佳琳 等. GO/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能 [J]. 无机化学学报, 2020, 36: 2240
32 Liu H. Preparation of Ag@AgBr/ZnO and its photocatalytic oxidation performance [D]. Harbin: Harbin University of Commerce, 2020
32 刘 昊. Ag@AgBr/ZnO的制备及光催化氧化性能的研究 [D]. 哈尔滨: 哈尔滨商业大学, 2020.
33 Akhundi A, Habibi-Yangjeh A. Novel magnetic g-C3N4/Fe3O4/AgCl nanocomposites: facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation [J]. Mater. Sci. Semicond. Process., 2015, 39: 162
doi: 10.1016/j.mssp.2015.04.052
34 Miller P L, Chin Y P. Photoinduced degradation of carbaryl in a wetland surface water [J]. J. Agric. Food Chem., 2002, 50: 6758
doi: 10.1021/jf025545m
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.