Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 597-601    DOI: 10.11901/1005.3093.2021.469
  研究论文 本期目录 | 过刊浏览 |
氧化石墨烯的变温发光
李福禄1, 韩春淼1, 高嘉望1, 蒋健1, 许卉2, 李冰1()
1.长春师范大学物理学院 长春 130032
2.吉林大学第一医院眼科 长春 130021
Temperature Dependent Luminescence Properties of Graphene Oxide
LI Fulu1, HAN Chunmiao1, GAO Jiawang1, JIANG Jian1, XU Hui2, LI Bing1()
1.College of Physics, Changchun Normal University, Changchun 130032, China
2.Department of Ophthalmology, the First Hospital of Jilin University, Changchun 130021, China
引用本文:

李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
Fulu LI, Chunmiao HAN, Jiawang GAO, Jian JIANG, Hui XU, Bing LI. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. Chinese Journal of Materials Research, 2022, 36(8): 597-601.

全文: PDF(973 KB)   HTML
摘要: 

根据光致发光光谱和吸收光谱研究了氧化石墨烯(GO)的发光性能。结果表明,GO的发光源于片层内的sp2C团簇。sp2C团簇被高势垒的氧化官能团(sp3C)包围,形成了多量子阱结构。GO内有不同尺寸的sp2C团簇,其带隙与尺寸相关,尺寸越小带隙越宽,使发光覆盖范围较宽并依赖激发波长。还改变激发波长和温度,根据发光光谱研究了GO中不同局域态的发光行为。结果表明,514 nm激发的sp2C团簇的热激活能比830 nm激发的高56 MeV。温度对较小尺寸sp2C团簇的影响较小,因为尺寸越小限域效应越强,使电子空穴对的辐射跃迁几率提高。

关键词 无机非金属材料低维碳材料氧化石墨烯发光光谱    
Abstract

The luminescence properties of GO were investigated by means of photoluminescence spectra and absorption spectra. It follows that the luminescence of GO originates from sp2C clusters in lamellar. Sp2C clusters are surrounded by high barrier oxidation functional groups (sp3C), forming a multi-quantum well structure. There are sp2C clusters of different sizes in GO, and the band gap is related to the size. The smaller the size, the wider the band gap, so that the luminous coverage is wider and depends on the excitation wavelength. The emission behavior of different local states in GO was investigated by changing the excitation wavelength and temperature. The results show that the thermal activation energy of sp2C clusters excited by 514 nm was 56 MeV higher than that excited by 830 nm. Temperature has little effect on smaller sp2C clusters, because the smaller the size, the stronger the confinement effect and the radiative transition probability of electron hole pair is increased.

Key wordsinorganic non-metallic materials    low dimensional carbon materials    graphene oxide    luminescence spectrum
收稿日期: 2021-08-17     
ZTFLH:  O613.7  
基金资助:国家自然科学基金(11404036);吉林省科技厅自然科学基金(20210101164JC);吉林省教育厅科学技术研究项目(JJKH20220824KJ);长春师范大学自然科学基金(2020-010)
作者简介: 李福禄,男,1996年生,硕士
图1  GO的紫外-可见吸收光谱和GO吸收光谱的Tauc拟合图
图2  GO在488 nm,514 nm和830 nm激发波长下的发光光谱和GO 发射峰的中心波长(左)和半峰宽(右)与激发光波长的关
图3  非晶碳的能带结构
图4  两种不同激发条件下GO相对发光强度的温度依赖性:(a) Eex =514 nm; (b) Eex =830 nm
图5  光致发光强度与1/KBT之间的关系
1 Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors [J]. Nano. Lett., 2008, 8: 3498
doi: 10.1021/nl802558y pmid: 18788793
2 Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors [J]. J. Chem. Sci., 2008, 120: 9
doi: 10.1007/s12039-008-0002-7
3 Ponomarenko L A, Sehedin F, Katsnelson M I, et al. Chaotic dirac billiard in graphene quantum dots [J]. Science, 2008, 320: 356
doi: 10.1126/science.1154663 pmid: 18420930
4 Said A R, Said K, Awwad F, et al. Design, fabrication, and characterization of Hg2+ sensorbased on graphite oxide and metallic nanoclusters [J]. Sensor Actuat. A. Phys., 2018, 271: 270
doi: 10.1016/j.sna.2018.01.033
5 Yang J K, Zhang X T, Li B, et al. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis [J]. J. Alloys Compd., 2014, 584: 180
doi: 10.1016/j.jallcom.2013.08.203
6 Li B, Zhang X T, Li X H, et al. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film [J]. Chem. Commun., 2010, 46: 3499
doi: 10.1039/c002200d
7 Ma F, Guo Z K, Xu K W, et al. First-principle study of energy band structure of armchair graphene nanoribbons [J]. Solid State Commu., 2012, 152: 1089
doi: 10.1016/j.ssc.2012.04.058
8 Zagonel L F, Mazzucco S, Tence M, et al. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure [J]. Nano. Lett., 2011, 11: 568
doi: 10.1021/nl103549t
9 Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438: 201
doi: 10.1038/nature04235
10 Luo Z T, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94: 111909
doi: 10.1063/1.3098358
11 Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater., 2010, 22: 505
doi: 10.1002/adma.200901996
12 Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater., 2010, 22: 734
doi: 10.1002/adma.200902825
13 Li B, Gao F, Yang G M, et al. Synthesis and characterization of graphene film via photo-chemical reduction of graphene oxide [J]. Chem. J. Chinese Universities, 2014, 35(12): 2612
14 Li B, Zhang X T, Chen P, et al. Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide-Ag nanoparticles film [J]. RSC. Adv., 2014, 4: 2404
doi: 10.1039/C3RA45355C
15 Zhao M X, Meng Z, Li H P, et al. Photodegradation of antibiotic in environmental water by graphene oxide modulation bismuth molybdate under visible light irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479
16 Lee J, Kim JG, Kim S C, et al. Biosensors based on graphene oxide and its biomedical application [J]. Adv. Drug. Deliv. Rev., 2016, 105: 275
doi: 10.1016/j.addr.2016.06.001
17 Shen X Q, Li Z, Wang G, et al. Logic and reversible dual DNA detection based on the assembly of graphene oxide and DNA-templated quantum dots [J]. Chem. J. Chinese Universities, 2017, 38(12): 2176
18 Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano. Res., 2008, 1: 203
doi: 10.1007/s12274-008-8021-8
19 Hununers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339
doi: 10.1021/ja01539a017
20 Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol., 2008, 3: 101
doi: 10.1038/nnano.2007.451
21 Li X Y, Zhang G Y, Bai X M, et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nat. Nanotechnol., 2008, 3: 538
doi: 10.1038/nnano.2008.210
22 Urbaeh F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Phys.Rev., 1953, 92: 1324
23 Wu J X, Xu F, Ye P, et al. The effects of nitrogen partial pressure on the microstructure of amorphous carbon nitride films [J]. Integr. Ferroelectr., 2017, 180(1): 139
doi: 10.1080/10584587.2017.1338917
24 Prasad N, Tanwar S, Mukhopadhyay S, et al. Spatio-temporal analysis of the electric field-induced solid-state reduction dynamics of graphene oxide thin films for controlled band-gap modulation [J]. J. Phys. Chem. C., 2020, 124: 21874
doi: 10.1021/acs.jpcc.0c07139
25 Adhikary S, Tian X M, Adhikari S, et al. Bonding defects and optical band gaps of DLC films deposited by microwave surface-wave plasma CVD [J]. Diam. Relat. Mater., 2005, 14: 1832
doi: 10.1016/j.diamond.2005.08.030
26 Essig S, Marquardt C W, Vijayaraghavan A, et al. Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene [J]. Nano. Lett., 2010, 10: 1589
doi: 10.1021/nl9039795 pmid: 20405819
27 Skumanich A, Frova A, Amer N M. Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys [J]. Solid State Commun., 1985, 54: 597
doi: 10.1016/0038-1098(85)90086-9
28 Gokus T, Nair R R, Bonetti A, et al. Making Graphene Luminescent by Oxygen Plasma Treatment [J]. ACS. Nano., 2009, 3: 3963
doi: 10.1021/nn9012753 pmid: 19925014
29 Guo H L, Wang X F, Qian Q Y, et al. A Green Approach to the Synthesis of Graphene Nanosheets [J]. ACS. Nano., 2009, 3: 2653
doi: 10.1021/nn900227d
30 Robertson J. π-bonded clusters in amorphous carbon materials [J]. Philos. Mag. B., 1992, 66: 199
doi: 10.1080/13642819208224583
31 Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng. R., 2002, 37: 129
doi: 10.1016/S0927-796X(02)00005-0
32 Vassilyev V A, Volkov A S, Musabekov E U, et al. Photoluminescence of amorphous hydrogenated silicon-carbon (a-SiC:H) films [J]. J.Non. Cryst.Solids, 1989, 114: 507
33 Lou Q, Qu S N, Jing P T, et al. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots) [J]. Adv. Mater., 2015, 27: 1389
doi: 10.1002/adma.201403635
34 Chambers M D, Clarke D R. Doped oxides for high-temperature luminescence and lifetime thermometry [J]. Annu. Rev. Mater. Res., 2009, 39: 325
doi: 10.1146/annurev-matsci-112408-125237
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 黄欢, 张迅韬, 杨尚科, 肖刘鑫, 张兆鑫, 严磊, 蔺海兰, 卞军, 陈代强. 氧化石墨烯/苯甲酸钠复合成核剂协同改性PA6纳米复合材料的性能[J]. 材料研究学报, 2022, 36(6): 416-424.