|
|
氧化石墨烯的变温发光 |
李福禄1, 韩春淼1, 高嘉望1, 蒋健1, 许卉2, 李冰1( ) |
1.长春师范大学物理学院 长春 130032 2.吉林大学第一医院眼科 长春 130021 |
|
Temperature Dependent Luminescence Properties of Graphene Oxide |
LI Fulu1, HAN Chunmiao1, GAO Jiawang1, JIANG Jian1, XU Hui2, LI Bing1( ) |
1.College of Physics, Changchun Normal University, Changchun 130032, China 2.Department of Ophthalmology, the First Hospital of Jilin University, Changchun 130021, China |
引用本文:
李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
Fulu LI,
Chunmiao HAN,
Jiawang GAO,
Jian JIANG,
Hui XU,
Bing LI.
Temperature Dependent Luminescence Properties of Graphene Oxide[J]. Chinese Journal of Materials Research, 2022, 36(8): 597-601.
1 |
Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors [J]. Nano. Lett., 2008, 8: 3498
doi: 10.1021/nl802558y
pmid: 18788793
|
2 |
Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors [J]. J. Chem. Sci., 2008, 120: 9
doi: 10.1007/s12039-008-0002-7
|
3 |
Ponomarenko L A, Sehedin F, Katsnelson M I, et al. Chaotic dirac billiard in graphene quantum dots [J]. Science, 2008, 320: 356
doi: 10.1126/science.1154663
pmid: 18420930
|
4 |
Said A R, Said K, Awwad F, et al. Design, fabrication, and characterization of Hg2+ sensorbased on graphite oxide and metallic nanoclusters [J]. Sensor Actuat. A. Phys., 2018, 271: 270
doi: 10.1016/j.sna.2018.01.033
|
5 |
Yang J K, Zhang X T, Li B, et al. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis [J]. J. Alloys Compd., 2014, 584: 180
doi: 10.1016/j.jallcom.2013.08.203
|
6 |
Li B, Zhang X T, Li X H, et al. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film [J]. Chem. Commun., 2010, 46: 3499
doi: 10.1039/c002200d
|
7 |
Ma F, Guo Z K, Xu K W, et al. First-principle study of energy band structure of armchair graphene nanoribbons [J]. Solid State Commu., 2012, 152: 1089
doi: 10.1016/j.ssc.2012.04.058
|
8 |
Zagonel L F, Mazzucco S, Tence M, et al. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure [J]. Nano. Lett., 2011, 11: 568
doi: 10.1021/nl103549t
|
9 |
Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438: 201
doi: 10.1038/nature04235
|
10 |
Luo Z T, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94: 111909
doi: 10.1063/1.3098358
|
11 |
Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater., 2010, 22: 505
doi: 10.1002/adma.200901996
|
12 |
Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater., 2010, 22: 734
doi: 10.1002/adma.200902825
|
13 |
Li B, Gao F, Yang G M, et al. Synthesis and characterization of graphene film via photo-chemical reduction of graphene oxide [J]. Chem. J. Chinese Universities, 2014, 35(12): 2612
|
14 |
Li B, Zhang X T, Chen P, et al. Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide-Ag nanoparticles film [J]. RSC. Adv., 2014, 4: 2404
doi: 10.1039/C3RA45355C
|
15 |
Zhao M X, Meng Z, Li H P, et al. Photodegradation of antibiotic in environmental water by graphene oxide modulation bismuth molybdate under visible light irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479
|
16 |
Lee J, Kim JG, Kim S C, et al. Biosensors based on graphene oxide and its biomedical application [J]. Adv. Drug. Deliv. Rev., 2016, 105: 275
doi: 10.1016/j.addr.2016.06.001
|
17 |
Shen X Q, Li Z, Wang G, et al. Logic and reversible dual DNA detection based on the assembly of graphene oxide and DNA-templated quantum dots [J]. Chem. J. Chinese Universities, 2017, 38(12): 2176
|
18 |
Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano. Res., 2008, 1: 203
doi: 10.1007/s12274-008-8021-8
|
19 |
Hununers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339
doi: 10.1021/ja01539a017
|
20 |
Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol., 2008, 3: 101
doi: 10.1038/nnano.2007.451
|
21 |
Li X Y, Zhang G Y, Bai X M, et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nat. Nanotechnol., 2008, 3: 538
doi: 10.1038/nnano.2008.210
|
22 |
Urbaeh F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Phys.Rev., 1953, 92: 1324
|
23 |
Wu J X, Xu F, Ye P, et al. The effects of nitrogen partial pressure on the microstructure of amorphous carbon nitride films [J]. Integr. Ferroelectr., 2017, 180(1): 139
doi: 10.1080/10584587.2017.1338917
|
24 |
Prasad N, Tanwar S, Mukhopadhyay S, et al. Spatio-temporal analysis of the electric field-induced solid-state reduction dynamics of graphene oxide thin films for controlled band-gap modulation [J]. J. Phys. Chem. C., 2020, 124: 21874
doi: 10.1021/acs.jpcc.0c07139
|
25 |
Adhikary S, Tian X M, Adhikari S, et al. Bonding defects and optical band gaps of DLC films deposited by microwave surface-wave plasma CVD [J]. Diam. Relat. Mater., 2005, 14: 1832
doi: 10.1016/j.diamond.2005.08.030
|
26 |
Essig S, Marquardt C W, Vijayaraghavan A, et al. Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene [J]. Nano. Lett., 2010, 10: 1589
doi: 10.1021/nl9039795
pmid: 20405819
|
27 |
Skumanich A, Frova A, Amer N M. Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys [J]. Solid State Commun., 1985, 54: 597
doi: 10.1016/0038-1098(85)90086-9
|
28 |
Gokus T, Nair R R, Bonetti A, et al. Making Graphene Luminescent by Oxygen Plasma Treatment [J]. ACS. Nano., 2009, 3: 3963
doi: 10.1021/nn9012753
pmid: 19925014
|
29 |
Guo H L, Wang X F, Qian Q Y, et al. A Green Approach to the Synthesis of Graphene Nanosheets [J]. ACS. Nano., 2009, 3: 2653
doi: 10.1021/nn900227d
|
30 |
Robertson J. π-bonded clusters in amorphous carbon materials [J]. Philos. Mag. B., 1992, 66: 199
doi: 10.1080/13642819208224583
|
31 |
Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng. R., 2002, 37: 129
doi: 10.1016/S0927-796X(02)00005-0
|
32 |
Vassilyev V A, Volkov A S, Musabekov E U, et al. Photoluminescence of amorphous hydrogenated silicon-carbon (a-SiC:H) films [J]. J.Non. Cryst.Solids, 1989, 114: 507
|
33 |
Lou Q, Qu S N, Jing P T, et al. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots) [J]. Adv. Mater., 2015, 27: 1389
doi: 10.1002/adma.201403635
|
34 |
Chambers M D, Clarke D R. Doped oxides for high-temperature luminescence and lifetime thermometry [J]. Annu. Rev. Mater. Res., 2009, 39: 325
doi: 10.1146/annurev-matsci-112408-125237
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|