Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 739-746    DOI: 10.11901/1005.3093.2023.087
  研究论文 本期目录 | 过刊浏览 |
制备方法对磷酸盐微晶玻璃结构和性能的影响
周毅1(), 涂强2, 米忠华3
1.太原科技大学材料科学与工程学院 太原 030024
2.上海核工程研究设计院有限公司 上海 200233
3.中船重工电机科技股份有限公司太原分公司 太原 030027
Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics
ZHOU Yi1(), TU Qiang2, MI Zhonghua3
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Shanghai Nuclear Engineering Research and Design Institute Co. Ltd., Shanghai 200233, China
3.Taiyuan Branch of CSIC Electrical Machinery Scienceand Technology Co. Ltd., Taiyuan 030027, China
引用本文:

周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
Yi ZHOU, Qiang TU, Zhonghua MI. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. Chinese Journal of Materials Research, 2023, 37(10): 739-746.

全文: PDF(4244 KB)   HTML
摘要: 

分别用熔融法和烧结法制备P2O5-Nb2O5-BaO-Na2O-CeO2体系磷酸盐微晶玻璃,用XRD谱和SEM观察表征其结构并测定其体积密度、显微硬度、介电性能、极化性能和储能特性,研究了制备工艺对其结构和性能的影响。结果表明,用熔融法可制备出结构更致密的微晶玻璃,使其体积密度和显微硬度提高和降低其介电损耗。当CeO2添加量提高到1%(摩尔分数)时,用两种工艺都可实现微晶玻璃的结构致密化,并促进其结晶。结晶程度的提高可改善微晶玻璃的介电常数和极化性能。用熔融法制备的CeO2添加量为1%(摩尔分数)的微晶玻璃样品其能量释放密度为13.5 mJ/cm3、储能效率为50.1%。

关键词 无机非金属材料微晶玻璃制备方法力学性能介电性能电滞回线储能特性    
Abstract

Gass-ceramics can be well used for making energy storage capacitors because of their unique structure of crystalline particles uniformly distributed in the glass matrix. Compared with conventional silicon glass-based glass-ceramics, phosphate glass-ceramics have significant advantage of less energy consumption. In this study, glass-ceramics of P2O5-Nb2O5-BaO-Na2O-CeO2 were prepared by melting and sintering respectively. The structure of the prepared phosphate glass-ceramics was characterized through XRD and SEM. The effect of preparation method on the structure and properties of the phosphate glass-ceramics were systematically studied in terms of the bulk density, microhardness, dielectric properties, polarization performance and energy storage etc. The results showed that the more compact glass-ceramics could be obtained by the melting method, which could improve the bulk density and micro-hardness of the glass-ceramics, the corresponding dielectric loss was reduced. In addition, when the addition of CeO2 was increased to 1% (mole fraction), the phosphate glass-ceramics obtained by the two methods were also achieved good densification. The addition of CeO2 played a role in promoting crystallization, which enhanced the dielectric constant and polarization performance. The released energy density of 13.5 mJ/cm3 and energy storage efficiency of 50.1% were obtained for the glass-ceramic with addition of 1% CeO2 (mole fraction) prepared by melting method.

Key wordsinorganic non-metallic materials    glass-ceramics    preparing method    mechanical properties    dielectric properties    P-E hysteresis loops    energy storage characteristics
收稿日期: 2023-01-05     
ZTFLH:  TQ110.1  
基金资助:国家自然科学基金(51902221);校企技术转让项目(C2022007)
通讯作者: 周毅,副教授,zhouyi@tyust.edu.cn,研究方向为无机非金属材料
Corresponding author: ZHOU Yi, Tel: 18335130685, E-mail: zhouyi@tyust.edu.cn
作者简介: 周毅,男,1984年生,博士
图1  磷酸盐微晶玻璃的XRD谱
图2  磷酸盐微晶玻璃的SEM照片
图3  用熔融法和烧结法制备的磷酸盐微晶玻璃的体积密度、显微维氏硬度和努氏硬度
图4  用熔融法和烧结法制备的磷酸盐微晶玻璃的介电常数与介电损耗的频率曲线
图5  用熔融法和烧结法制备的磷酸盐微晶玻璃的极化曲线、能量释放密度与能量效率
No.Glass-ceramic systemεrtan δE /kV·mm-1Ud /mJ·cm-3ηRef.
1PbO-SrO-Na2O-Nb2O5-SiO24270.02244.2850-[31]
2BaO-Na2O-Nb2O5-SiO23120.01616.337072[7]
3BaO-SrO-TiO2-Al2O3-SiO22820.01826.517842.3[32]
4BaTiO3-glass (BaO-Bi2O3-P2O5)17500.0881.52.342.3[25]
5BaO-Na2O-P2O5-Nb2O5-WO3380.021925.673.7[26]
6NaNbO3-glass (Na2O-Nb2O5- P2O5)4060.01668.484.8[33]
表1  用于储能电容器的微晶玻璃的电学性能
1 Cheng J S, Li H, Tang L Y, et al. Glass-Ceramics [M]. Beijing: Chemical Industry Press, 2006: 1
1 程金树, 李 宏, 汤李缨 等. 微晶玻璃 [M]. 北京: 化学工业出版社, 2006: 1
2 McMillan P W. Glass-Ceramics [M]. London: Academic Press, 1964: 3
3 Herczog A. Application of glass-ceramics for electronic components and circuits [J]. IEEE Trans. Parts Hybrids Packag., 1973, 9: 247
4 Gorzkowski E P, Pan M J, Bender B A, et al. Effect of additives on the crystallization kinetics of barium strontium titanate glass-ceramics [J]. J. Am. Ceram. Soc., 2008, 91: 1065
doi: 10.1111/jace.2008.91.issue-4
5 Huang S F, Li Y, Wei S H, et al. A novel high-strength lithium disilicate glass-ceramic featuring a highly intertwined microstructure [J]. J. Eur. Ceram. Soc., 2017, 37: 1083
doi: 10.1016/j.jeurceramsoc.2016.10.020
6 Zhou Y, Li Y M, Qiao Y, et al. Investigation of structure, dielectric and energy-storage properties of lead-free niobate glass and glass-ceramics [J]. J. Alloys Compd., 2018, 747: 55
doi: 10.1016/j.jallcom.2018.03.016
7 Zhou Y, Qiao Y, Tian Y M, et al. Improvement in structural, dielectric and energy-storage properties of lead-free niobate glass-ceramic with Sm2O3 [J]. J. Eur. Ceram. Soc., 2017, 37: 995
doi: 10.1016/j.jeurceramsoc.2016.10.022
8 Tian Y M, Zhou Y, Du J. Preparation and dielectric characterization of lead-free niobate glass-ceramic composites added with Lu2O3 [J]. J. Am. Ceram. Soc., 2014, 97: 2353
doi: 10.1111/jace.2014.97.issue-8
9 Zhao Y Y, Zhou Y, Yang J Y, et al. Optimized structural and mechanical properties of borophosphate glass [J]. Ceram. Int., 2020, 46: 9025
doi: 10.1016/j.ceramint.2019.12.150
10 Haily E, Bih L, Jerroudi M, et al. Structural and dielectric properties of K2O-TiO2-P2O5 glass and its associated glass-ceramic [J]. Mater. Today Proc., 2020, 30: 849
11 Sidorov A I, Fedorov Y K, Sivak A I, et al. Raman spectroscopic investigations on UV irradiated phosphate glasses with high content of silver or sodium [J]. Opt. Mater., 2020, 102: 109816
doi: 10.1016/j.optmat.2020.109816
12 Li K, Kou H M, Ning C Q. Sintering and mechanical properties of lithium disilicate glass-ceramics prepared by sol-gel method [J]. J. Non-Cryst. Solids, 2021, 552: 120443
doi: 10.1016/j.jnoncrysol.2020.120443
13 Zhou L H, Luo W Q, Wang Y S, et al. Preparation and structural transformation of PbF2·SiO2 based glass ceramics prepared by sol-gel method [J]. Chin. J Struct. Chem., 2004, 23: 1404
13 周丽花, 罗文钦, 王元生 等. PbF2·SiO2基玻璃陶瓷的溶胶-凝胶法制备及结构转变研究 [J]. 结构化学, 2004, 23: 1404
14 Liu S H, Li Q J, Shen J. Development of preparing bioglass ceramic coatings by sol-gel [J]. Glass Enam., 2004, 32: 43
14 刘守华, 李启甲, 沈 健. 溶胶-凝胶法制备生物玻璃陶瓷涂层的发展 [J]. 玻璃与搪瓷, 2004, 32: 43
15 Sun M Z. Fundamentals of Dielectric Physics [M]. Guangzhou: South China University of Technology Press, 2000: 33
15 孙目珍. 电介质物理基础 [M]. 广州: 华南理工大学出版社, 2000: 33
16 Thakur A, Chevalier A, Mattei J L, et al. Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range [J]. J. Appl. Phys., 2010, 108: 014301
17 Mathur P, Thakur A, Singh M. Comparative study of dielectric behavior of Mn0.4Zn0.6Fe2O4 nanoferrite by citrate precursor method [J]. Int. J. Mod. Phys., 2008, 22B: 2537
18 Du B X, Zhu L W. Electrical tree characteristics of XLPE under repetitive pulse voltage in low temperature [J]. IEEE Trans. Dielect. Electr. Insul., 2015, 22: 1801
doi: 10.1109/TDEI.2015.005183
19 Zhou Y, Zhang Q M, Luo J, et al. Structural and dielectric characterization of Gd2O3-added BaO-Na2O-Nb2O5-SiO2 glass-ceramic composites [J]. Scr. Mater., 2011, 65: 296
doi: 10.1016/j.scriptamat.2011.04.027
20 Zhang Q M, Wang L, Luo J, et al. Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass [J]. J. Am. Ceram. Soc., 2009, 92: 1871
doi: 10.1111/jace.2009.92.issue-8
21 Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics [J]. J. Mater. Sci. Lett., 1996, 15: 1767
doi: 10.1007/BF00275336
22 Wang H, Zhao H F, Kang J S, et al. Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3 [J]. Chin. J. Mater. Res., 2021, 35: 110
22 王 昊, 赵洪峰, 康加爽 等. B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能 [J]. 材料研究学报, 2021, 35: 110
23 Hu G L, Zhu J F, Yang H B, et al. Effect of Cr2O3 addition on the microstructure and electrical properties of SnO2-based varistor [J]. J. Mater. Sci. Mater. Electron., 2013, 24: 1735
doi: 10.1007/s10854-012-1007-z
24 Park J H, Kim B K, Park J G, et al. Dielectric hysteresis measurement in lossy ferroelectrics [J]. Ferroelectrics, 1999, 230: 151
doi: 10.1080/00150199908214911
25 Haily E, Bih L, El Bouari A, et al. Effect of BaO-Bi2O3-P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics [J]. Mater. Chem. Phys., 2020, 241: 122434
doi: 10.1016/j.matchemphys.2019.122434
26 Ihyadn A, Lahmar A, Mezzane D, et al. Structural, elelectrical and energy storage properties of BaO-Na2O-Nb2O5-WO3-P2O5 glass-ceramics system [J]. Mater. Res. Express, 2019, 6: 115203
doi: 10.1088/2053-1591/ab4569
27 Jiang J Y, Shen Z H, Qian J F, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density [J]. Energy Storage Mater., 2019, 18: 213
28 Mackey M, Schuele D E, Zhu L, et al. Reduction of dielectric hysteresis in multilayered films via nanoconfinement [J]. Macromolecules, 2012, 45: 1954
doi: 10.1021/ma202267r
29 Wu L W, Wang X H, Li L T. Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage [J]. RSC Adv., 2016, 6: 14273
doi: 10.1039/C5RA21261H
30 Zhao L, Gao J, Liu Q, et al. Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping [J]. ACS Appl. Mater. Interfaces, 2018, 10: 819
doi: 10.1021/acsami.7b17382
31 Han D F, Zhang Q M, Luo J, et al. Optimization of energy storage density in ANb2O6-NaNbO3-SiO2 (A=[(1-x)Pb, xSr]) nanostructured glass-ceramic dielectrics [J]. Ceram. Int., 2012, 38: 6903
doi: 10.1016/j.ceramint.2012.04.087
32 Zhang Y, Huang J J, Ma T, et al. Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass-ceramics [J]. J. Am. Ceram. Soc., 2011, 94: 1805
doi: 10.1111/jace.2011.94.issue-6
33 Benyounoussy S, Bih L, Muñoz F, et al. Effect of the Na2O-Nb2O5-P2O5 glass additive on the structure, dielectric and energy storage performances of sodium niobate ceramics [J]. Heliyon, 2021, 7: e07113
doi: 10.1016/j.heliyon.2021.e07113
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[8] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[9] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.