Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 781-790    DOI: 10.11901/1005.3093.2022.627
  研究论文 本期目录 | 过刊浏览 |
g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮
刘志华1,3,4(), 岳远超2, 丘一帆2, 卜湘1,3,4, 阳涛1,3,4
1.长沙理工大学水利与环境工程学院 长沙 410114
2.长沙理工大学化学化工学院 长沙 410114
3.洞庭湖水环境治理与生态修复湖南省重点实验室 长沙 410114
4.湖南省环境保护河湖疏浚污染控制工程技术中心 长沙 410114
Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate
LIU Zhihua1,3,4(), YUE Yuanchao2, QIU Yifan2, BU Xiang1,3,4, YANG Tao1,3,4
1.School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
2.School of Chemistry and Chemical Engineering, Changsha University of Science & Technology, Changsha 410114, China
3.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
4.Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
引用本文:

刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
Zhihua LIU, Yuanchao YUE, Yifan QIU, Xiang BU, Tao YANG. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. Chinese Journal of Materials Research, 2023, 37(10): 781-790.

全文: PDF(8457 KB)   HTML
摘要: 

用高温煅烧、反应合成以及光还原等方法制备新型g-C3N4/Ag/BiOBr复合光催化材料,使用SEM、XRD、EPMA、FT-IR、XPS和UV-vis等手段对其表征,研究了这种复合材料在金卤灯照射下对硝酸盐氮(50 mg/L)的还原效果和氮气选择性。结果表明,使用1 g/L g-C3N4/Ag/BiOBr复合光催化材料,光反应180 min后硝酸盐的去除率为95.2%。用g-C3N4/Ag/BiOBr光催化硝酸盐氮的主要产物中N2的占比最高(为88.0%),氮气的选择性为92.4%。g-C3N4/Ag/BiOBr催化剂中的Ag能促进对电子的捕捉,BiOBr的光生电子经银单质转移到g-C3N4的价带上形成Z型复合光催化结构。这种复合光催化剂可将硝酸盐氮氧化,空穴清除剂甲酸在复合材料中空穴的作用下转化成强氧化性物质(COO-)并进一步将其还原成硝酸盐氮。

关键词 无机非金属材料g-C3N4/Ag/BiOBr硝酸盐氮复合材料光催化氮气选择性    
Abstract

Nitrate as one of the water pollutants is one of the major environmental problems. Photocatalytic reduction of nitrate nitrogen has attracted a lot of attention because of its high efficiency and environmental friendliness. The g-C3N4/Ag/BiOBr composite photocatalyst was prepared by high temperature calcination, reaction synthesis and photoreduction. The photocatalysts were characterized by SEM, XRD, EPMA、FT-IR, XPS and UV-vis, and the reduction effect of the composite on nitrate nitrogen (50 mg/L) under the irradiation of metal halide lamp was studied. The results showed that when 1g/L g-C3N4/Ag/BiOBr catalyst was used, the nitrate concentration was 2.4 mg/L, and the removal rate was 95.2% after 180 min photoreaction. Compared with g-C3N4, BiOBr and g-C3N4/BiOBr photocatalysts, the removal rates increased by 38.8%, 34.6% and 13.1%, respectively. Nitrogen was the main product in the photocatalytic conversion of nitrate nitrogen. The proportion of N2 in the main products of nitrate nitrogen photocatalyzed by g-C3N4/Ag/BiOBr was the highest (88.0%), and the selectivity of nitrogen was 92.4%. Ag can be used as an electron trapping agent to effectively reduce the recombination of electron-hole pairs in photocatalytic materials. Under the action of silver, the photogenerated electrons of BiOBr are transferred to the valence band of g-C3N4 by silver elemental material, forming a Z-type composite photocatalytic structure. Nitrate nitrogen can be directly oxidized by the composite photocatalyst, and the hole scavenger formic acid can be converted into a strong oxidizing substance (COO.-) under the action of the composite hole, which can further reduce nitrate nitrogen.

Key wordsinorganic non-metallic materials    g-C3N4/Ag/BiOBr    nitrate nitrogen    composite    photocatalysis    nitrogen selectivity
收稿日期: 2022-11-25     
ZTFLH:  O643  
基金资助:湖南省教育厅优秀青年项目(19B040);长沙理工大学青年教师成长计划(2019QJCZ038);长沙理工大学研究生实践创新项目(SJCX202189)
通讯作者: 刘志华,liuzhihua@csust.edu.cn, 研究方向为光催化材料
Corresponding author: LIU Zhihua, Tel: 13574872739, E-mail: liuzhihua@csust.edu.cn
作者简介: 刘志华,男,1979年生,博士
图1  不同光催化剂的XRD谱
图2  BiOBr、C3N4和C3N4-Ag-BiOBr 的XPS谱
图3  不同催化剂的FT-IR谱
图4  不同催化剂的SEM像
图5  g-C3N4/Ag/BiOBr的元素面分布
图6  不同催化剂的紫外可见光漫反射谱
图7  不同光催化剂对硝酸盐氮还原的影响
图8  不同光催化剂对硝酸盐氮还原及产物的影响
PhotocatalystHole scavengerLight sourceRN/%SN2/%Ref.
g-C3N4/Ag/BiOBrFormic acidHalide lamp95.292.4This work
Ag/TiO2Formic acidXe lamp9590[48]
Au/TiO2Oxalic acidHigh-pressure Hg lamp4449.9[49]
0.5TiO2/Ti3C2/g-C3N4Formic acidHigh-pressure Hg lamp93.396.62[29]
Fe-LiNbO3Formic acidHigh-pressure Hg lamp9088[50]
ZnSe/BiVO4Formic acidHigh-pressure Hg lamp89.8491.03[14]
NH2-MIL-101(Fe)/BiVO4Formic acidHigh-pressure Hg lamp94.893.5[51]
Ag/SiO2@cTiO2Formic acidHigh-pressure Hg lamp95.893.6[22]
表1  光催化还原硝酸盐氮的比较
图9  g-C3N4/Ag/BiOBr光催化材料的光还原机制
1 Suriyaraj S P, Selvakumar R. Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water [J]. RSC Adv., 2016, 6: 10565
doi: 10.1039/C5RA24789F
2 Wei L, Adamson M A S, Vela J. Ni2P-modified Ta3N5 and TaON for photocatalytic nitrate reduction [J]. ChemNanoMat, 2020, 6: 1179
doi: 10.1002/cnma.v6.8
3 Zarei S, Farhadian N, Akbarzadeh R, et al. Fabrication of novel 2D Ag-TiO2/γ-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate [J]. Int. J. Biol. Macromol., 2020, 145: 926
doi: 10.1016/j.ijbiomac.2019.09.183
4 Ge X H, Fu W Z, Wang Y J, et al. Removal of nitrate nitrogen from water by phosphotungstate-supported TiO2 photocatalytic method [J]. Environ. Sci. Pollut. Res., 2020, 27: 40475
doi: 10.1007/s11356-020-09947-y
5 Qiu Y Y, Zhang L, Mu X T, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation [J]. Water Res., 2020, 169, 115084
doi: 10.1016/j.watres.2019.115084
6 Ma H, Gao X L, Chen Y H, et al. Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity [J]. Environ. Pollut., 2021, 287: 117668
doi: 10.1016/j.envpol.2021.117668
7 Zeng D F, Liang K, Guo F, et al. Denitrification performance and microbial community under salinity and MIT stresses for reverse osmosis concentrate treatment [J]. Sep. Purif. Technol., 2020, 242: 116799
doi: 10.1016/j.seppur.2020.116799
8 Wang Z X, Richards D, Singh N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction [J]. Catal. Sci. Technol., 2021, 11: 705
doi: 10.1039/D0CY02025G
9 Vandekerckhove T G L, Kobayashi K, Janda J, et al. Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost [J]. Bioresour Technol., 2018, 257: 266
doi: 10.1016/j.biortech.2018.02.047
10 Lim J, Liu C Y, Park J, et al. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia [J]. ACS Catal., 2021, 11: 7568
doi: 10.1021/acscatal.1c01413
11 Rai R K, Tyagi D, Singh S K. Room-temperature catalytic reduction of aqueous nitrate to Ammonia with Ni nanoparticles immobilized on an Fe3O4@n-SiO2@h-SiO2-NH2 support [J]. Eur. J. Inorg. Chem., 2017, 2017: 2450
doi: 10.1002/ejic.v2017.18
12 Tugaoen H O, Garcia-Segura S, Hristovski K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology [J]. Sci. Total Environ., 2017, 599-600: 1524
doi: 10.1016/j.scitotenv.2017.04.238
13 Yang W P, Wang J L, Chen R M, et al. Reaction mechanism and selectivity regulation of photocatalytic nitrate reduction for wastewater purification: progress and challenges [J]. J. Mater. Chem., 2022, 10A: 17357
14 Shi H L, Li C H, Wang L, et al. Photocatalytic reduction of nitrate pollutants by novel Z-scheme ZnSe/BiVO4 heterostructures with high N2 selectivity [J]. Separat. Purificat. Technol., 2022, 300: 121854
doi: 10.1016/j.seppur.2022.121854
15 Zazo J A, García-Muñoz P, Pliego G, et al. Selective reduction of nitrate to N2 using ilmenite as a low cost photo-catalyst [J]. Appl. Catal., 2020, 273B: 118930
16 Anderson J A. Photocatalytic nitrate reduction over Au/TiO2 [J]. Catal. Today, 2011, 175: 316
doi: 10.1016/j.cattod.2011.04.009
17 Zhang F X, Jin R C, Chen J X, et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters [J]. J. Catal., 2005, 232: 424
doi: 10.1016/j.jcat.2005.04.014
18 Lucchetti R, Onotri L, Clarizia L, et al. Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over "in situ" prepared zero-valent nano copper/P25 [J]. Appl. Catal., 2017, 202B: 539
19 Ren H T, Jia S Y, Zou J J, et al. A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate [J]. Appl. Catal., 2015, 176-177B: 53
20 Adamu H, McCue A J, Taylor R S F, et al. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites [J]. Appl. Catal., 2017, 217B: 181
21 Wang L S, Fu W Z, Zhuge Y P, et al. Synthesis of polyoxometalates (POM)/TiO2/Cu and removal of nitrate nitrogen in water by photocatalysis [J]. Chemosphere, 2021, 278: 130298
doi: 10.1016/j.chemosphere.2021.130298
22 Hou Z A, Chu J F, Liu C, et al. High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@cTiO2 with synergistic effect of light scattering and surface plasmon resonance [J]. Chem. Eng. J., 2021, 415: 128863
doi: 10.1016/j.cej.2021.128863
23 Imam S S, Adnan R, Kaus N H M. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review [J]. J. Environ. Chem. Eng., 2021, 9(4): 105404
doi: 10.1016/j.jece.2021.105404
24 Fu J W, Yu J G, Jiang C J, et al. g-C3N4-based heterostructured photocatalysts [J]. Adv. Energy Mater, 2018, 8: 1701503
doi: 10.1002/aenm.v8.3
25 Chen P, Liu H J, Cui W, et al. Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges [J]. EcoMat, 2020, 2(3): e12047
doi: 10.1002/eom2.v2.3
26 Meng L Y, Qu Y, Jing L Q. Recent advances in BiOBr-based photocatalysts for environmental remediation [J]. Chin. Chem. Lett., 2021, 32(11): 3265
doi: 10.1016/j.cclet.2021.03.083
27 Vu M H, Sakar M, Nguyen C C, et al. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation [J]. ACS Sustainable Chem. Eng., 2018, 6: 4194
doi: 10.1021/acssuschemeng.7b04598
28 Song T, Yu X, Tian N, et al. Preparation, structure and application of g-C3N4/BiOX composite photocatalyst [J]. Int. J. Hydrogen Energy, 2021, 46(2): 1857
doi: 10.1016/j.ijhydene.2020.10.136
29 Zheng R, Li C H, Huang K L, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution [J]. Inorg. Chem. Front., 2021, 8(10): 2518
doi: 10.1039/D1QI00001B
30 Jaffari Z H, Lam S M, Sin J C, et al. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination [J]. Separat. Purificat. Technol., 2020, 236: 116195
doi: 10.1016/j.seppur.2019.116195
31 Yang L W, Liu L J, Xia X F, et al. Preparation of pg-C3N4/BiOBr/Ag composite and photocatalytic degradation of sulfamethoxazole [J]. Environmental Science, 2021, 42(6): 2896
31 杨利伟, 刘丽君, 夏训峰 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲噁唑 [J]. 环境科学, 2021, 42(6): 2896
32 Varapragasam S J P, Andriolo J M, Skinner J L, et al. Photocatalytic reduction of aqueous nitrate with hybrid Ag/g-C3N4 under ultraviolet and visible light [J]. ACS Omega, 2021, 6: 34850
doi: 10.1021/acsomega.1c05523 pmid: 34963968
33 Di J, Xia J X, Yin S, et al. A g-C3N4/BiOBr visible-light-driven composite: Synthesis via a reactable ionic liquid and improved photocatalytic activity [J]. RSC Adv., 2013, 3(42): 19624
doi: 10.1039/c3ra42269k
34 Li Z Y, Zhao Y J, Guan Q, et al. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen [J]. Appl. Surf. Sci., 2020, 508: 145225
doi: 10.1016/j.apsusc.2019.145225
35 He F, He Z J, Xie J L, et al. IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system [J]. Am. J. Analyt. Chem., 2014, 5(16): 1142
36 Zhou C Y, Lai C, Huang D L, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven [J]. Appl. Catal., 2018, 220B: 202
37 Liu Z S, Bi Y H, Zhao Y L, et al. Synthesis and photocatalytic property of BiOBr/palygorskite composites [J]. Mater. Res. Bull., 2014, 49: 167
doi: 10.1016/j.materresbull.2013.08.068
38 Fu Y H, Liang W, Guo J Q, et al. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity [J]. Appl. Surf. Sci., 2018, 430: 234
doi: 10.1016/j.apsusc.2017.08.042
39 Xin G, Meng Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue [J]. J. Chem., 2013, 2013: 187912
40 Kharlamov A, Marina B, Kharlamova G, et al. Features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis [J]. Diam. Relat. Mater., 2016, 66: 16
doi: 10.1016/j.diamond.2016.03.012
41 Dai H Z, Gao X C, Liu E Z, et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition [J]. Diam. Relat. Mater. 2013, 38: 109
doi: 10.1016/j.diamond.2013.06.012
42 Fu Y S, Huang L T, Zhang J L, et al. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach [J]. Nanoscale, 2015, 7: 13723
doi: 10.1039/C5NR03260A
43 Gupta G, Kaur A, Sinha A S K, et al. Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light [J]. Mater. Res. Bull., 2017, 88: 148
doi: 10.1016/j.materresbull.2016.12.016
44 Lu L F, Kong L, Jiang Z, et al. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr [J]. Catal. Lett., 2012, 142(6): 771
doi: 10.1007/s10562-012-0824-2
45 Yan T J, Yan X Y, Guo R R, et al. Ag/AgBr/BiOBr hollow hierarchical microspheres with enhanced activity and stability for RhB degradation under visible light irradiation [J]. Catal. Commun., 2013, 42: 30
doi: 10.1016/j.catcom.2013.07.022
46 Zheng R, Li C H, Huang K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2 [J]. Inorg. Chem. Front., 2022, 9(6): 1195
doi: 10.1039/D1QI01614H
47 Zhang D F, Wang B Q, Gong X B, et al. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation [J]. Chem. Eng. J., 2019, 359: 1195
doi: 10.1016/j.cej.2018.11.058
48 Sun D C, Yang W Y, Zhou L, et al. The selective deposition of silver nanoparticles onto {1 0 1} facets of TiO2 nanocrystals with co-exposed {0 0 1}/{1 0 1} facets, and their enhanced photocatalytic reduction of aqueous nitrate under simulated solar illumination [J]. Appl. Catal., 2016, 182B: 85
49 Kominami H, Furusho A, Murakami S Y, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium (IV) oxide particles in the presence of oxalic acid [J]. Catal. Lett., 2001, 76: 31
doi: 10.1023/A:1016771908609
50 Li X, Wang S, An H Z, et al. Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism [J]. Appl. Surf. Sci., 2021, 539: 148257
doi: 10.1016/j.apsusc.2020.148257
51 Shi H L, Li C H, Wang L, et al. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity [J]. J. Hazardous Mater., 2022, 424: 127711
doi: 10.1016/j.jhazmat.2021.127711
52 Ge L, Han C C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles [J]. Appl. Catal, 2011, 409-411A: 215
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[9] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[11] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[13] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[14] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[15] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.