|
|
自供能Ag/SnSe纳米管红外探测器的制备和性能研究 |
方向明1, 任帅2, 容萍2, 刘烁2, 高世勇2( ) |
1.太原学院材料与化学工程系 太原 030032 2.哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 |
|
Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes |
FANG Xiangming1, REN Shuai2, RONG Ping2, LIU Shuo2, GAO Shiyong2( ) |
1.Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China 2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
Xiangming FANG,
Shuai REN,
Ping RONG,
Shuo LIU,
Shiyong GAO.
Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. Chinese Journal of Materials Research, 2022, 36(8): 591-596.
1 |
Zeng Y K, Liu M D, Huang Y Q. Infrared detector array with PLZT thick films on silicon-based microstructure tunnels [J]. Chin. J. Mater. Res., 2004, 18: 308
|
1 |
曾亦可, 刘梅冬, 黄焱球. Si基微绝热结构PLZT厚膜红外探测器阵列 [J]. 材料研究学报, 2004, 18: 308
|
2 |
Li A Z, Zheng Y L, Lin C. MBE grown antimonide mid-infrared lasers and photodetectors [J]. Chin. J. Mater. Res., 2001, 15: 29
|
2 |
李爱珍, 郑燕兰, 林 春. 用分子束外延制备红外锑化物激光器和探测器材料 [J]. 材料研究学报, 2001, 15: 29
|
3 |
Rogalski A. Infrared detectors: an overview [J]. Infrared Phys. Technol., 2002, 43: 187
doi: 10.1016/S1350-4495(02)00140-8
|
4 |
Zhang M, Cao M S, Shu J C, et al. Electromagnetic absorber converting radiation for multifunction [J]. Mater. Sci. Eng., 2021, 145R: 100627
|
5 |
Mi L F, Wang H, Zhang Y, et al. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors [J]. Nanotechnology, 2017, 28: 055202
|
6 |
Luo B, Zhao J, Cheng B C, et al. A surface state-controlled, high-performance, self-powered photovoltaic detector based on an individual SnS nanorod with a symmetrical electrode structure [J]. J. Mater. Chem. C, 2018, 6: 9071
doi: 10.1039/C8TC01503A
|
7 |
Xu H Y, Hao L Z, Liu H, et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect [J]. ACS Appl. Mater. Interfaces, 2020, 12: 35250
doi: 10.1021/acsami.0c09561
|
8 |
Yao J D, Zheng Z Q, Yang G W. All‐layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes [J]. Adv. Funct. Mater., 2017, 27: 1701823
doi: 10.1002/adfm.201701823
|
9 |
Murali K, Majumdar K. Self-powered, highly sensitive, high-speed photodetection using ITO/WSe2/SnSe2 vertical heterojunction [J]. IEEE Trans. Electron Dev., 2018, 65: 4141
|
10 |
Qiao H, Huang Z Y, Ren X H, et al. Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization [J]. J. Mater. Sci., 2018, 53: 4371
doi: 10.1007/s10853-017-1878-8
|
11 |
Xue H, Dai Y Y, Kim W, et al. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure [J]. Nanoscale, 2019, 11: 3240
doi: 10.1039/C8NR09248F
|
12 |
Shankar K, Tep K C, Mor G K, et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties [J]. J. Phys. D: Appl. Phys., 2006, 39: 2361
doi: 10.1088/0022-3727/39/11/008
|
13 |
Zhao H M, Chen Y, Quan X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation [J]. Chin. Sci. Bull., 2007, 52: 1456
doi: 10.1007/s11434-007-0170-8
|
14 |
Hao L Z, Wang Z G, Xu H Y, et al. 2D SnSe/Si heterojunction for self-driven broadband photodetectors [J]. 2D Mater., 2019, 6: 034004
|
15 |
Yang L X, He D M, Cai Q Y, et al. Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays [J]. J. Phys. Chem. C, 2007, 111: 8214
doi: 10.1021/jp067207k
|
16 |
Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112: 13563
doi: 10.1021/jp802729a
|
17 |
Zeng Y Y, Pan X H, Lu B, et al. Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles [J]. RSC Adv., 2016, 6: 31316
doi: 10.1039/C6RA02922A
|
18 |
Chan S C, Barteau M A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition [J]. Langmuir, 2005, 21: 5588
pmid: 15924494
|
19 |
Taing J, Cheng M H, Hemminger J C. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG [J]. ACS Nano, 2011, 5: 6325
doi: 10.1021/nn201396v
|
20 |
He J X, Yang P J, Sato H, et al. Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets [J]. J. Electroanal. Chem., 2004, 566: 227
doi: 10.1016/j.jelechem.2003.11.031
|
21 |
Liu Y, Zhang X H, Su J, et al. Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector [J]. Opt. Express, 2014, 22: 30148
doi: 10.1364/OE.22.030148
|
22 |
Devi N M, Singh N K. Plasmon-induced Ag decorated CeO2 nanorod array for photodetector application [J]. Nanotechnology, 2020, 31: 225203
doi: 10.1088/1361-6528/ab76e9
|
23 |
Joshna P, Hazra A, Chappanda K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array [J]. Semicond. Sci. Technol., 2020, 35: 015001
|
24 |
Hao L Z, Du Y J, Wang Z G, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity [J]. Nanoscale, 2020, 12: 7358
doi: 10.1039/D0NR00319K
|
25 |
Pawbake A S, Jadkar S R, Late D J. High performance humidity sensor and photodetector based on SnSe nanorods [J]. Mater. Res. Express, 2016, 3: 105038
doi: 10.1088/2053-1591/3/10/105038
|
26 |
Ren S, Liu S, Gao S Y, et al. A facile solution synthesis of scaly-like hollow SnSe nanotubes for self-powered infrared sensor [J]. J. Alloys Compd., 2021, 879: 160446
doi: 10.1016/j.jallcom.2021.160446
|
27 |
Bai H J, Yang B S, Chai C J, et al. Green synthesis of silver nanoparticles using Rhodobacter sphaeroides [J]. World J. Microbiol. Biotechnol., 2011, 27: 2723
doi: 10.1007/s11274-011-0747-x
|
28 |
Gatemala H, Tongsakul D, Naranaruemol S, et al. Synthesis of silver microfibers with ultrahigh aspect ratio by galvanic replacement reaction [J]. Mater. Chem. Phys., 2019, 237: 121872
doi: 10.1016/j.matchemphys.2019.121872
|
29 |
Zhou J Y, Chen L L, Wang Y Q, et al. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors [J]. Nanoscale, 2016, 8: 50
doi: 10.1039/C5NR06167A
|
30 |
Xie Y R, Wei L, Li Q H, et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays [J]. Nanotechnology, 2014, 25: 075202
|
31 |
McDaniel H, Fuke N, Makarov N S, et al. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells [J]. Nat. Commun., 2013, 4: 2887
doi: 10.1038/ncomms3887
pmid: 24322379
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|