Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 591-596    DOI: 10.11901/1005.3093.2021.375
  研究论文 本期目录 | 过刊浏览 |
自供能Ag/SnSe纳米管红外探测器的制备和性能研究
方向明1, 任帅2, 容萍2, 刘烁2, 高世勇2()
1.太原学院材料与化学工程系 太原 030032
2.哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes
FANG Xiangming1, REN Shuai2, RONG Ping2, LIU Shuo2, GAO Shiyong2()
1.Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China
2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
Xiangming FANG, Shuai REN, Ping RONG, Shuo LIU, Shiyong GAO. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. Chinese Journal of Materials Research, 2022, 36(8): 591-596.

全文: PDF(1505 KB)   HTML
摘要: 

采用光沉积法在SnSe纳米管表面沉积Ag纳米粒子,在室温下制备了Ag修饰的SnSe纳米管(Ag/SnSe),通过SEM、EDS、TEM和XRD等手段表征其表面形貌、元素组成和晶体结构。随后,将Ag/SnSe纳米管旋涂在FTO导电面作为工作电极并以Pt电极为对电极组装了Ag/SnSe纳米管红外探测器,使用830 nm的光作为红外模拟光源研究了红外探测性能。结果表明,Ag/SnSe纳米管的平均直径约为100~200 nm,Ag纳米颗粒负载在SnSe纳米管表面。与SnSe纳米管红外探测器相比,Ag修饰的SnSe纳米管红外探测器的最大光电流密度提高到120 nA/cm2,上升时间和下降时间分别缩短到0.109和0.086 s。同时,Ag修饰的SnSe纳米管红外探测器的稳定性较高,可循环使用。

关键词 无机非金属材料SnSe纳米管光沉积法Ag纳米粒子红外探测器    
Abstract

Ag-modified SnSe nanotubes (Ag/SnSe NTs) were fabricated by light irradiation assissted deposition process, therewith Ag nanoparticles were deposited on the surface of SnSe NTs at room temperature. The morphology, chemical composition and crystal structure of the prepared Ag/SnSe NTs were characterized by SEM, EDS, TEM and XRD. The results show that the average diameter of SnSe NTs covered with Ag nanoparticles is approximately 100~200 nm. In addition, the infrared detector based on Ag/SnSe NTs (IRPD) was assembled with Ag/SnSe NTs spin-coated on the conductive surface of FTO as the working electrode and the Pt electrode as the counter electrode. Afterwards, the infrared detection performance of Ag/SnSe NTs IRPD was further investigated by adopting infrared light of 830 nm as the simulated light source. Compared with the SnSe NTs IRPD, the maximum photocurrent density of Ag/SnSe NTs IRPD achieves 120 nA/cm2, simultaneously the rise time and decay time are declined to 0.109 s and 0.086 s, respectively, demonstrating the characteristics of good stability and repeatability.

Key wordsinorganic non-metallic materials    SnSe nanotubes    light deposition method    Ag nanoparticles    infrared detector
收稿日期: 2021-06-24     
ZTFLH:  TN36  
基金资助:国家重点研发计划(2019YFA0705201);黑龙江省自然科学基金(LH2020E033)
作者简介: 方向明,男,1982年生,副教授
图1  SnSe纳米管和Ag/SnSe纳米管的SEM照片
图2  Ag/SnSe纳米管的EDS能谱
图3  Ag/SnSe纳米管的TEM和高分辨TEM照片
图4  Ag/SnSe纳米管的XRD谱
图5  SnSe纳米管和Ag/SnSe纳米管红外探测器在开/关红外光照射下的电流密度曲线
图6  SnSe纳米管和Ag/SnSe纳米管红外探测器单个周期的光电响应特征曲线
图7  Ag/SnSe纳米管红外探测器的原理
1 Zeng Y K, Liu M D, Huang Y Q. Infrared detector array with PLZT thick films on silicon-based microstructure tunnels [J]. Chin. J. Mater. Res., 2004, 18: 308
1 曾亦可, 刘梅冬, 黄焱球. Si基微绝热结构PLZT厚膜红外探测器阵列 [J]. 材料研究学报, 2004, 18: 308
2 Li A Z, Zheng Y L, Lin C. MBE grown antimonide mid-infrared lasers and photodetectors [J]. Chin. J. Mater. Res., 2001, 15: 29
2 李爱珍, 郑燕兰, 林 春. 用分子束外延制备红外锑化物激光器和探测器材料 [J]. 材料研究学报, 2001, 15: 29
3 Rogalski A. Infrared detectors: an overview [J]. Infrared Phys. Technol., 2002, 43: 187
doi: 10.1016/S1350-4495(02)00140-8
4 Zhang M, Cao M S, Shu J C, et al. Electromagnetic absorber converting radiation for multifunction [J]. Mater. Sci. Eng., 2021, 145R: 100627
5 Mi L F, Wang H, Zhang Y, et al. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors [J]. Nanotechnology, 2017, 28: 055202
6 Luo B, Zhao J, Cheng B C, et al. A surface state-controlled, high-performance, self-powered photovoltaic detector based on an individual SnS nanorod with a symmetrical electrode structure [J]. J. Mater. Chem. C, 2018, 6: 9071
doi: 10.1039/C8TC01503A
7 Xu H Y, Hao L Z, Liu H, et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect [J]. ACS Appl. Mater. Interfaces, 2020, 12: 35250
doi: 10.1021/acsami.0c09561
8 Yao J D, Zheng Z Q, Yang G W. All‐layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes [J]. Adv. Funct. Mater., 2017, 27: 1701823
doi: 10.1002/adfm.201701823
9 Murali K, Majumdar K. Self-powered, highly sensitive, high-speed photodetection using ITO/WSe2/SnSe2 vertical heterojunction [J]. IEEE Trans. Electron Dev., 2018, 65: 4141
10 Qiao H, Huang Z Y, Ren X H, et al. Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization [J]. J. Mater. Sci., 2018, 53: 4371
doi: 10.1007/s10853-017-1878-8
11 Xue H, Dai Y Y, Kim W, et al. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure [J]. Nanoscale, 2019, 11: 3240
doi: 10.1039/C8NR09248F
12 Shankar K, Tep K C, Mor G K, et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties [J]. J. Phys. D: Appl. Phys., 2006, 39: 2361
doi: 10.1088/0022-3727/39/11/008
13 Zhao H M, Chen Y, Quan X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation [J]. Chin. Sci. Bull., 2007, 52: 1456
doi: 10.1007/s11434-007-0170-8
14 Hao L Z, Wang Z G, Xu H Y, et al. 2D SnSe/Si heterojunction for self-driven broadband photodetectors [J]. 2D Mater., 2019, 6: 034004
15 Yang L X, He D M, Cai Q Y, et al. Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays [J]. J. Phys. Chem. C, 2007, 111: 8214
doi: 10.1021/jp067207k
16 Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112: 13563
doi: 10.1021/jp802729a
17 Zeng Y Y, Pan X H, Lu B, et al. Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles [J]. RSC Adv., 2016, 6: 31316
doi: 10.1039/C6RA02922A
18 Chan S C, Barteau M A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition [J]. Langmuir, 2005, 21: 5588
pmid: 15924494
19 Taing J, Cheng M H, Hemminger J C. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG [J]. ACS Nano, 2011, 5: 6325
doi: 10.1021/nn201396v
20 He J X, Yang P J, Sato H, et al. Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets [J]. J. Electroanal. Chem., 2004, 566: 227
doi: 10.1016/j.jelechem.2003.11.031
21 Liu Y, Zhang X H, Su J, et al. Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector [J]. Opt. Express, 2014, 22: 30148
doi: 10.1364/OE.22.030148
22 Devi N M, Singh N K. Plasmon-induced Ag decorated CeO2 nanorod array for photodetector application [J]. Nanotechnology, 2020, 31: 225203
doi: 10.1088/1361-6528/ab76e9
23 Joshna P, Hazra A, Chappanda K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array [J]. Semicond. Sci. Technol., 2020, 35: 015001
24 Hao L Z, Du Y J, Wang Z G, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity [J]. Nanoscale, 2020, 12: 7358
doi: 10.1039/D0NR00319K
25 Pawbake A S, Jadkar S R, Late D J. High performance humidity sensor and photodetector based on SnSe nanorods [J]. Mater. Res. Express, 2016, 3: 105038
doi: 10.1088/2053-1591/3/10/105038
26 Ren S, Liu S, Gao S Y, et al. A facile solution synthesis of scaly-like hollow SnSe nanotubes for self-powered infrared sensor [J]. J. Alloys Compd., 2021, 879: 160446
doi: 10.1016/j.jallcom.2021.160446
27 Bai H J, Yang B S, Chai C J, et al. Green synthesis of silver nanoparticles using Rhodobacter sphaeroides [J]. World J. Microbiol. Biotechnol., 2011, 27: 2723
doi: 10.1007/s11274-011-0747-x
28 Gatemala H, Tongsakul D, Naranaruemol S, et al. Synthesis of silver microfibers with ultrahigh aspect ratio by galvanic replacement reaction [J]. Mater. Chem. Phys., 2019, 237: 121872
doi: 10.1016/j.matchemphys.2019.121872
29 Zhou J Y, Chen L L, Wang Y Q, et al. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors [J]. Nanoscale, 2016, 8: 50
doi: 10.1039/C5NR06167A
30 Xie Y R, Wei L, Li Q H, et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays [J]. Nanotechnology, 2014, 25: 075202
31 McDaniel H, Fuke N, Makarov N S, et al. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells [J]. Nat. Commun., 2013, 4: 2887
doi: 10.1038/ncomms3887 pmid: 24322379
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.