Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 675-684    DOI: 10.11901/1005.3093.2022.509
  研究论文 本期目录 | 过刊浏览 |
空心球形AlOOH的无模板水热制备和吸附性能
邵鸿媚1(), 崔勇1, 徐文迪1, 张伟1, 申晓毅2, 翟玉春2
1.沈阳理工大学环境与化学工程学院 沈阳 110159
2.东北大学冶金学院 沈阳 110819
Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH
SHAO Hongmei1(), CUI Yong1, XU Wendi1, ZHANG Wei1, SHEN Xiaoyi2, ZHAI Yuchun2
1.School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
Hongmei SHAO, Yong CUI, Wendi XU, Wei ZHANG, Xiaoyi SHEN, Yuchun ZHAI. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. Chinese Journal of Materials Research, 2023, 37(9): 675-684.

全文: PDF(14977 KB)   HTML
摘要: 

以Al2(SO4)3和尿素为原料用无模板水热法制备空心球形AlOOH,研究了Al3+/尿素配比、水热温度、水热时间和Al3+浓度对其结构和形貌的影响。结果表明,空心球形AlOOH由大量纳米薄片构成,其形成是一个沉淀、溶解再结晶的过程。AlOOH的比表面积和总孔体积较大,对刚果红的吸附性能良好,吸附10 min即达平衡,吸附容量达253.81 mg·g-1。AlOOH循环再生4次,仍保持较高的吸附容量。吸附过程符合准二阶动力学模型。用Langmuir和Freundlich模型都能很好的拟合吸附数据。

关键词 无机非金属材料空心球形AlOOH无模板水热吸附形成过程    
Abstract

Hollow spherical AlOOH was successfully prepared by template-free hydrothermal method employing Al2(SO4)3 and urea as raw materials. The appropriate preparation conditions were obtained after determining the influence of Al3+/urea molar ratio, hydrothermal temperature, time and Al3+ concentration on the structure and morphology of the prepared AlOOH. The hollow spherical structure consisted of a large number of nanoflakes possesses a high specific surface area and a total pore volume, whose formation is a process involving precipitation, dissolution and recrystallization. Hollow spherical AlOOH exhibits excellent adsorption capacity for Congo red with the adsorption equilibrium of 10 min and the maximal adsorption capacity of 253.81 mg·g-1. The adsorption capacity still maintains a high level after 4 times of recycling. The pseudo-second-order model fits the adsorption process well. Both the Langmuir and Freundlich models fit the adsorption well.

Key wordsinorganic non-metallic materials    hollow spherical AlOOH    template-free hydrothermal    adsorption    formation process
收稿日期: 2022-09-20     
ZTFLH:  X75  
基金资助:国家自然科学基金(52004165);辽宁省教育厅基本科研项目(LJKZ0254);辽宁省教育厅基本科研项目(LJKQZ2021056)
通讯作者: 邵鸿媚,shaohm@sylu.edu.cn,研究方向为功能材料制备与应用
Corresponding author: SHAO Hongmei, Tel: 18809893626, E-mail: shaohm@sylu.edu.cn
作者简介: 邵鸿媚,女,1986年生,副教授
图1  Al3+/尿素摩尔比不同的AlOOH的XRD谱和SEM形貌
图2  反应温度不同的样品的XRD谱和SEM形貌
图3  反应时间不同的样品的XRD谱和SEM形貌
图4  Al3+浓度不同的AlOOH的XRD谱和SEM形貌
图5  AlOOH的SEM形貌和N2吸附-解吸曲线
图6  空心球形AlOOH的形成过程示意图
图7  空心球形AlOOH的吸附容量与时间和刚果红平衡浓度的关系
图8  拟二阶动力学和粒子内扩散模型的拟合曲线

C0

/ mg·g-1

Pseudo-second-order modelIntra-particle-diffusion model
qek2R2ks1ks2ks3R12R22R32
/ mg·g-1/ g·mg-1·min-1mg·g-1·min1/2
10099.380.06360.999990.024.180.0310.97870.9996
150143.670.05370.9999131.605.500.0310.95660.9415
200179.230.05250.9999168.644.800.0610.99290.9926
表1  吸附刚果红的拟二阶和粒子内扩散模型动力学参数
图9  吸附刚果红的等温线模型
T/KLangmuir isotherm modelFreundlich isotherm model
qmax/k/R2K/1/nR2
mg·g-1L·mg-1(mg·g-1)(L·mg-1)1/n
273207.900.10010.995680.38200.1760.9974
298253.810.10380.991289.58880.2000.9944
323289.860.14430.9916104.86360.2060.9960
表2  Langmuir和Freundlich模型的拟合参数
T/KΔGΘ/kJ·mol-1ΔHΘ/kJ·mol-1ΔSΘ/J·mol-1·K-1
273-9.973.86950.55
298-11.14
323-12.49
表3  吸附刚果红过程的热力学参数
图10  吸附前后AlOOH的红外光谱
图11  吸附机理的示意图
图12  循环测试中AlOOH吸附刚果红容量的变化
1 Shen Y L, Li B G. Preparation of magnetic amino acid-functionalized aluminum alginate gel polymer and its super adsorption on azo dyes [J]. Chin. J. Mater. Res., 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
1 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附 [J]. 材料研究学报, 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
2 Lam S M, Kee M W, Sin J C. Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation [J]. Mater. Chem. Phys., 2018, 212: 35
doi: 10.1016/j.matchemphys.2018.03.002
3 Sykam N, Jayram N D, Rao G M. Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism [J]. J. Water Process Eng., 2018, 25: 128
doi: 10.1016/j.jwpe.2018.05.013
4 Yang X R, Liu H Z. Ferrocene-functionalized silsesquioxane-based porous polymer for efficient removal of dyes and heavy metal ions [J]. Chem.-Eur. J., 2018, 24: 13504
doi: 10.1002/chem.201801765 pmid: 29934979
5 Que A Z, Zhu T Y, Zheng Y Y. Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue [J]. Chin. J. Mater. Res., 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
5 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能 [J]. 材料研究学报, 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
6 Shen X Y, Shao H M, Liu Y, et al. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51: 1
doi: 10.1016/j.jmst.2020.01.062
7 Hamdy M S, Awwad N S, Alshahrani A M. Mesoporous magnesia: synthesis, characteri- zation, adsorption behavior and cytotoxic activity [J]. Mater. Design, 2016, 110: 503
8 Zhang Y F, Ma M Z, Zhang X Y, et al. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes [J]. J. Alloys and Compd., 2014, 590: 373
doi: 10.1016/j.jallcom.2013.12.113
9 Liu Y, Zhang Y C, Xu X F. Hydrothermal synthesis and photocatalytic activity of CdO2 nanocrystals [J]. J. Hazard. Mater., 2009, 163: 1310
doi: 10.1016/j.jhazmat.2008.07.101
10 Vo T K, Park H K, Nam C W, et al. Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(VI) adsorption [J]. J. Ind. Eng. Chem., 2018, 60: 485
doi: 10.1016/j.jiec.2017.11.036
11 Zhou Y, Zeng H C. Adsorption and on-site transformation of transition metal cations on Ni-doped AlOOH nanoflowers for OER electrocatalysis [J]. ACS Sus. Chem. Eng., 2019, 7: 5953
12 Tao W, Zhong H, Pan X B, et al. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification [J]. J. Hazard. Mater., 2020, 384: 121373
doi: 10.1016/j.jhazmat.2019.121373
13 Ma P G, Ding W M, Yuan J L, et al. Total recycle strategy of phosphorus recovery from wastewater using granule chitosan inlaid with γ-AlOOH [J]. Environ. Res., 2020, 184: 109309
doi: 10.1016/j.envres.2020.109309
14 Wu X Y, Zhang B Q, Hu Z S, et al. Additive-free and time-saving microwave hydrothermal synthesis of hollow microspheres structured boehmite [J]. Adv. Powder Technol., 2014, 25(2): 514
doi: 10.1016/j.apt.2013.08.005
15 Cai W Q, Yu J G, Jaroniec M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water [J]. J. Mater. Chem., 2010, 20(22): 4587
doi: 10.1039/b924366f
16 Ge T, Jiang Z, Shen L, et al. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI) [J]. Sep. Purif. Technol., 2021, 263: 118401
doi: 10.1016/j.seppur.2021.118401
17 Wu X Y, Zhang B Q, Hu Z S. Morphology-controlled hydrothermal synthesis of boehmite via an anions competition method [J]. Powder Technol., 2013, 239: 272
doi: 10.1016/j.powtec.2013.02.023
18 Cai W Q, Yu J G, Mann S. Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres [J]. Micropor. Mesoporo. Mat., 2009, 122(1-3): 42
doi: 10.1016/j.micromeso.2009.02.003
19 Guo X Z, Yin P A, Yang H. Superb adsorption of organic dyes from aqueous solution on hierarchically porous composites constructed by ZnAl-LDH/Al(OH)3 nanosheets [J]. Micropor. Mesopor. Mat., 2018, 259: 123
doi: 10.1016/j.micromeso.2017.10.003
20 Zhang Y X, Ye Y J, Zhou X B, et al. Monodispersed hollow aluminosilica microsphere @hierarchical γ-AlOOH deposited with or without Fe(OH)3 nanoparticles for efficient adsorption of organic pollutants [J]. J. Mater. Chem. A, 2016, 4(3): 838
doi: 10.1039/C5TA07919E
21 Wang P P, Ye Y X, Liang D W, et al. Layered mesoporous Mg(OH)2/GO nanosheet composite for efficient removal of water contaminants [J]. RSC Adv., 2016, 6(32): 26977
doi: 10.1039/C6RA02914K
22 Li Z F, Du Y, Zhang S Y, et al. Synthesis and characterization of hierarchical γ-AlOOH and γ-Al2O3 microspheres with high adsorption performance for organic dyes [J]. RSC Adv., 2016, 6(92): 89699
doi: 10.1039/C6RA17606B
23 Zheng G Y, Wu C H, Wang J L, et al. Space-confined effect one-pot synthesis of γ-AlO(OH)/MgAl-LDH heterostructures with excellent adsorption performance [J]. Nanoscale Res. Lett., 2019, 14(1): 281
doi: 10.1186/s11671-019-3112-x
24 Tang Z, Liang J L, Li X H, et al. Synthesis of flower-like boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route [J]. J. Solid State Chem., 2013, 202: 305
doi: 10.1016/j.jssc.2013.03.049
25 Yan Z L, Fu L J, Yang H M, et al. Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance [J]. J. Hazard. Mater., 2018, 344: 1090
doi: 10.1016/j.jhazmat.2017.11.058
26 Zhang H M, Ruan Y, Feng Y, et al. Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red [J]. J. Colloid Interf. Sci., 2019, 536: 180
doi: S0021-9797(18)31251-7 pmid: 30366183
27 Lei C S, Pi M, Xu D F, et al. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance [J]. Appl. Surf. Sci., 2017, 426: 360
doi: 10.1016/j.apsusc.2017.07.095
28 Nie L H, Tan Q, Zhu W, et al. Fast adsorption removal of Congo red on hierarchically porous γ-Al2O3 hollow microspheres prepared by microwave-assisted hydrothermal method [J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815
doi: 10.3866/PKU.WHXB201507201
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.