Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 10-20    DOI: 10.11901/1005.3093.2021.586
  研究论文 本期目录 | 过刊浏览 |
ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能
谢锋1, 郭建峰1, 王海涛2, 常娜1()
1.天津工业大学化学工程与技术学院 天津 300387
2.天津工业大学环境科学与工程学院 天津 300387
Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance
XIE Feng1, GUO Jianfeng1, WANG Haitao2, CHANG Na1()
1.School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
2.School of Environmental Science and Technology, Tianjin 300387, China
引用本文:

谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
Feng XIE, Jianfeng GUO, Haitao WANG, Na CHANG. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. Chinese Journal of Materials Research, 2023, 37(1): 10-20.

全文: PDF(16627 KB)   HTML
摘要: 

先用水热反应合成六方晶相CdS多层级花状微球并在其表面生长ZnO纳米棒形成均匀的ZnO/CdS复合结构,然后用光还原法将Ag纳米颗粒负载于ZnO纳米棒制备出ZnO/CdS/Ag三元半导体光催化剂,对其进行扫描电镜和透射电镜观察、光电性能测试、活性基团捕获实验以及光催化降解和抗菌性能测试,研究其对亚甲基蓝(MB)的降解和抗菌性能。结果表明:ZnO纳米棒均匀生长在CdS微球表面,CdS晶体没有明显裸露,Ag纳米粒子负载在ZnO纳米棒的表面;ZnO/CdS/Ag三元复合光催化剂有良好的可见光响应、较低的阻抗和较高的光电流密度;ZnO/CdS/Ag复合光催化剂能同时产生羟基和超氧自由基等活性氧基团;ZnO/CdS/Ag三元复合光催化剂对亚甲基蓝(MB)的30 min降解率高于90%;0.25 mg/mL的ZnO/CdS/Ag对革兰氏阴性菌(大肠杆菌)的灭菌率高于96%,对革兰氏阳性菌(金黄色葡萄球菌)能完全灭除。

关键词 无机非金属材料光催化氧化锌纳米棒灭菌    
Abstract

Firstly, hexagonal crystalline CdS multilayer flower-like microspheres were synthesized by hydrothermal reaction, next on the surface of which ZnO nanorods were grown on to form uniform ZnO/CdS composite, and thirdly ZnO/CdS/Ag ternary semiconductor photocatalyst was prepared by depositing Ag nanoparticles onto ZnO nanorods by photoreduction method. The prepared ZnO/CdS/Ag photocatalyst was characterized by scanning electron microscope and transmission electron microscope, while its photoelectric property, active group capture characteristics, photocatalytic degradability for methylene blue (MB) and antibacterial property were also examined. The results show that ZnO nanorods uniformly grow on the surface of CdS microspheres, and Ag nanoparticles were deposited on the surface of ZnO nanorods. ZnO/CdS/Ag ternary photocatalyst has good visible light response, low impedance and high photocurrent density. ZnO/CdS/Ag composite photocatalyst can simultaneously produce hydroxyl and superoxide radicals and other reactive oxygen groups. The degradation rate of methylene blue (MB) on ZnO/CdS/Ag ternary photocatalyst in 30 min is higher than 90%. The sterilization rate of 0.25 mg/mL ZnO/CdS/Ag to Gram-negative bacteria (Escherichia coli) is higher than 96%, and gram-positive bacteria (Staphylococcus aureus) can be completely destroyed.

Key wordsinorganic non-metallic materials    photocatalysis    zinc oxide    nanorod    antibacterial property
收稿日期: 2021-10-13     
ZTFLH:  X703.1  
基金资助:国家重点研发计划(2019YFC0408400)
作者简介: 谢锋,男,1996年生,硕士生
图1  ZnO/CdS/Ag的制备流程图
图2  ZnO、CdS、ZnO/CdS和ZnO/CdS/Ag催化剂的XRD谱
图3  ZnO/CdS/Ag催化剂的XPS谱
图4  CdS(a)、ZnO(b)、ZnO/CdS (c) 、ZnO/CdS/Ag(d)的扫描电镜照片
图5  ZnO/CdS(a)、ZnO/CdS/Ag(b)的透射电镜照片
图6  ZnO/CdS/Ag催化剂的元素分布,总元素图(a)、Zn(b)、O(c)、Cd(d)、S(e)、Ag(f)和ZnO/CdS/Ag催化剂的EDS元素组成图(g)
图7  ZnO、CdS、ZnO/CdS、ZnO/CdS/Ag的紫外-可见吸收光谱(a)、光致发光光谱(b)、电化学阻抗图(c)及瞬时光电流响应图(d)
图8  ZnO、CdS、ZnO/CdS、ZnO/CdS/Ag对亚甲基蓝的光催化降解曲线(a)及其动力学拟合曲线(b);ZnO/CdS/Ag与参考文献中光催化反应效果对比图(c);ZnO/CdS/Ag光催化反应活性物种捕获实验(d)
图9  0.25 mg/mL ZnO/CdS/Ag对大肠杆菌(空白a1、黑暗条件a2、光照条件a3)及金黄色葡萄球菌(空白b1、黑暗条件b2、光照条件b3)的抗菌性能
图10  0.5 mg/L ZnO/CdS/Ag对大肠杆菌(黑暗条件a1、光照条件a2)及金黄色葡萄球菌(黑暗条件b1、光照条件b2)的抗菌性能
图11  Mott-Schottky曲线(a)以及光催化反应机理图(b)
1 Lin Y, Hu H Y, Hu Y H. Role of ZnO morphology in its reduction and photocatalysis [J]. Appl. Surf. Sci., 2020, 502: 144202
doi: 10.1016/j.apsusc.2019.144202
2 Tian S Q, Liu Q F, Sun J N, et al. Mesoporous ZnO nanorods array with a controllable area density for enhanced photocatalytic properties [J]. J. Colloid Interface Sci., 2019, 534: 389
doi: 10.1016/j.jcis.2018.09.049
3 Raha S, Ahmaruzzaman M. Facile fabrication of g-C3N4 supported Fe3O4 nanoparticles/ZnO nanorods: A superlative visible light responsive architecture for express degradation of pantoprazole [J]. Chem. Eng. J., 2020, 387: 123766
doi: 10.1016/j.cej.2019.123766
4 Li J Y, Dai B S, Qi Y J, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals [J]. J. Alloy Compd., 2021, 877: 9
5 Khan M I, Naeem M, Mustafa G M, et al. Synthesis and characterization of Co and Ga co-doped ZnO thin films as an electrode for dye sensitized solar cells [J]. Ceram. Int., 2020, 46: 26590
doi: 10.1016/j.ceramint.2020.07.127
6 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 728
doi: 10.11901/1005.3093.2019.146
6 谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 728
7 Fang X M, Zeng Z, Gao S, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chin. J. Mater. Res., 2018, 32: 945
7 方向明, 曾 值, 高世勇 等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32: 945
8 Yuvaraj S, Fernandez A C, Sundararajan M, et al. Hydrothermal synthesis of ZnO-CdS nanocomposites: Structural, optical and electrical behavior [J]. Ceram. Int., 2020, 46:391
doi: 10.1016/j.ceramint.2019.08.274
9 Senasu T, Chankhanittha T, Hemavibool K, et al. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic [J]. Mater. Sci. Semicond Process, 2021, 123: 105558
doi: 10.1016/j.mssp.2020.105558
10 Liu Y, Dong R, Ma Y, et al. Improved photocatalytic hydrogen evolution by facet engineering of core-shell structural CdS@ZnO [J]. Int. J. Hydrogen Energy, 2019, 44: 25599
doi: 10.1016/j.ijhydene.2019.08.008
11 Bai L, Li S J, Ding Z J, et al. Wet chemical synthesis of CdS/ZnO nanoparticle/nanorod hetero-structure for enhanced visible light disposal of Cr(VI) and methylene blue [J]. Colloid Surface A, 2020, 607: 125489
doi: 10.1016/j.colsurfa.2020.125489
12 Ha L P P, Vinh T H T, Thuy N T B, et al. Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: Synthesis and characterizations [J]. J. Environ. Chem. Eng., 2021, 9: 105103
doi: 10.1016/j.jece.2021.105103
13 Zhang Y, Liu L, Van Der Bruggen B, et al. A free-standing 3D nano-composite photo-electrode-Ag/ZnO nanorods arrays on Ni foam effectively degrade berberine [J]. Chem. Eng. J., 2019, 373: 179
doi: 10.1016/j.cej.2019.05.026
14 Rajkumar P, Sarma B K. Ag/ZnO heterostructure fabricated on AZO platform for SERS based sensitive detection of biomimetic hydroxyapatite [J]. Appl. Surf. Sci., 2020, 509: 144798
doi: 10.1016/j.apsusc.2019.144798
15 Singhal S, Dixit S, Shukla A K. Self-assembly of the Ag deposited ZnO/carbon nanospheres: A resourceful photocatalyst for efficient photocatalytic degradation of methylene blue dye in water [J]. Adv. Powder Technol., 2018, 29: 3483
doi: 10.1016/j.apt.2018.09.031
16 Yin L X, Zhang H F, Huang J F, et al. Enhanced visible-light photocatalytic activity of Ag/In2S3 photocatalysts induced by Schottky contact and SPR of Ag [J]. J. Mater. Sci. Mater. Electron, 2020, 31: 2089
doi: 10.1007/s10854-019-02730-x
17 Kumar V, Singh N, Jana S, et al. Surface polar charge induced Ni loaded CdS heterostructure nanorod for efficient photo-catalytic hydrogen evolution [J]. Int. J. Hydrogen Energy, 2021, 46: 16373
doi: 10.1016/j.ijhydene.2020.06.176
18 Zhu X L, Liang X Z, Wang P, et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles [J]. Appl. Surf. Sci., 2018, 456: 493
doi: 10.1016/j.apsusc.2018.06.127
19 Gu W, Yang X, Teng F, et al. Enhanced photo activity by hole concentration on CdS surface [J]. Chem. Phys. Lett, 2020, 759: 137945
doi: 10.1016/j.cplett.2020.137945
20 Xiong S, Xi B, Qian Y. CdS Hierarchical Nanostructures with Tunable Morphologies: Preparation and Photocatalytic Properties [J]. J. Phys. Chem. C, 2010, 114: 14029
doi: 10.1021/jp1049588
21 Liu Y T, Zhang Q P, Xu M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation [J]. Appl. Surf. Sci, 2019, 476: 632
doi: 10.1016/j.apsusc.2019.01.137
22 Peng Z, Li Y, Wang W, et al. Facile synthesis of magnetic Fe@Al-ZnO nanocomposite for photocatalytic bacterial inactivation under visible-light irradiation [J]. Mater. Sci. Semicond Process, 2021, 123: 105560
doi: 10.1016/j.mssp.2020.105560
23 Gajendiran J, Vijayakumar V, Senthil V P, et al. Ionic liquid assisted wet chemical synthesis CdS quantum dots and their structural, morphological, optical, electrochemical, photocatalytic, antibacterial and hemocompatibility characterization [J]. Optik, 2020, 213: 164638
doi: 10.1016/j.ijleo.2020.164638
24 Xie Z, Feng Y, Wang F, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline [J]. Appl. Catal. B Environ., 2018, 229: 96
doi: 10.1016/j.apcatb.2018.02.011
25 Gao Y, Li S, Li Y, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate [J]. Appl. Catal. B Environ., 2017, 202: 165
doi: 10.1016/j.apcatb.2016.09.005
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 胡青, 吴春芳, 张凯锋, 潘浩, 李坤. 小型金纳米棒的制备[J]. 材料研究学报, 2022, 36(7): 519-526.