Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 667-678    DOI: 10.11901/1005.3093.2021.187
  研究论文 本期目录 | 过刊浏览 |
7B04铝合金超塑变形过程中空洞的演变和能量耗散
杨文静1,2, 李光宇1,2, 王建1,2, 丁桦1,2(), 张宁3, 张艳苓3, 侯红亮3, 李志强3
1.东北大学材料科学与工程学院 沈阳 110819
2.辽宁省轻量化用关键金属结构材料重点实验室 沈阳 110819
3.中国航空制造技术研究院 北京 100024
Morphology Evolution of Cavity and Energy Dissipation during Superplastic Deformation of 7B04 Al-alloy
YANG Wenjing1,2, LI Guangyu1,2, WANG Jian1,2, DING Hua1,2(), ZHANG Ning3, ZHANG Yanling3, HOU Hongliang3, LI Zhiqiang3
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Lightweight Structural Materials, Liaoning Province, Shenyang 110819, China
3.AVIC Manufacturing Technology Institute, Beijing 100024, China
引用本文:

杨文静, 李光宇, 王建, 丁桦, 张宁, 张艳苓, 侯红亮, 李志强. 7B04铝合金超塑变形过程中空洞的演变和能量耗散[J]. 材料研究学报, 2022, 36(9): 667-678.
Wenjing YANG, Guangyu LI, Jian WANG, Hua DING, Ning ZHANG, Yanling ZHANG, Hongliang HOU, Zhiqiang LI. Morphology Evolution of Cavity and Energy Dissipation during Superplastic Deformation of 7B04 Al-alloy[J]. Chinese Journal of Materials Research, 2022, 36(9): 667-678.

全文: PDF(9270 KB)   HTML
摘要: 

对平均晶粒尺寸分别为10和20 μm的7B04铝合金板材在530℃/3×10-4 s-1变形条件下开展了不同变形量的超塑拉伸实验。结果表明,随着变形量的增大空洞形态的变化为:空洞形核→球形空洞弥散分布→非球形空洞沿拉伸方向伸长→空洞沿拉伸方向聚合→大尺寸空洞的非拉伸方向聚合。在拉伸断裂前的变形阶段,合金组织中出现尺寸大于260 μm的聚合空洞。在空洞聚合的初期,沿拉伸方向的空洞聚合不会使材料断裂。大尺寸空洞沿非拉伸方向聚合,是判断材料失稳的依据。根据实验数据计算空洞长大的公式并绘制了空洞的演变机理图,包括空洞的形核、扩散长大、塑性长大和聚合长大的公式,据此可判断空洞的形态和材料失稳。根据组织演变建立了空洞扩散、塑性长大的物理模型,可用于计算超塑变形过程中空洞演变所需的能量耗散和绘制能量耗散图。

关键词 金属材料空洞长大机理图空洞长大能量耗散模型    
Abstract

Superplastic tensile tests of 7B04 Al-alloy plates with average grain sizes of 10 and 20 μm were carried out at strain rate of 3×10-4 s-1 at 530℃ and with various desired deformation degrees. The results show that, as the deformation degree increases, the evolution of cavity morphology of the alloys follows the following order: cavity nucleation → spherical cavity dispersion → nonspherical cavity elongation along the stretching direction → cavity coalescence along the stretching direction → large-size cavity coalescence in the non-stretching direction. In the deformation stage before tensile fracture, there were polymeric cavities larger than 260 μm in size. At the initial stage of coalescence, the cavities aggregate along the tensile direction did not lead to fracture immediately. Large-size cavities coalesce along the non-tensile direction, which is the basis for judging the instability of materials. According to the experimental data, the cavity growth equation was established and the Cavity Growth Mechanism Map (CGMM) was plotted, including equations related with the nucleation, diffusion growth, plastic growth and aggregation growth of cavities, based on the CGMM the cavity morphology and material instability can be judged. According to the evolution of microstructure a physical model of cavity diffusion and plastic growth was established, based on which the energy dissipation required by cavity evolution during superplastic deformation can be calculated and the energy dissipation diagram can be drawn.

Key wordsmetallic materials    cavity growth mechanism map    cavity growth energy dissipation
收稿日期: 2021-03-18     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51334006)
作者简介: 杨文静,女,1987年生,博士生
ZnMgCuMnFeTiSiAl
5.962.221.600.400.060.040.03Bal.
表1  7B04铝合金的化学成分
图1  超塑拉伸实验试样的尺寸
图2  10 μm板材不同变形量拉伸后空洞的分布
图3  20 μm板材不同变形量拉伸后空洞的分布
图4  空洞的体积分数和半径与变形量的关系
图5  10 μm和20 μm板材不同变形量拉伸试样的变形组织
图6  晶粒尺寸-真应变关系曲线和晶粒尺寸-空洞半径关系曲线
图7  空洞非水平方向聚合的示意图
图8  空洞长大的机理
图9  空洞扩散控制长大机制的物理模型
图10  空洞塑性控制长大的物理模型
图11  空洞演变的能量耗散
1 Wang Y C, Cao L F, Wu X D, et al. Research progress on microstructure and properties of 7xxx series aluminum alloys for oil drill pipes [J]. Mater. Rep., 2019, 33: 1190
1 王一唱, 曹玲飞, 吴晓东 等. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展 [J]. 材料导报, 2019, 33: 1190
2 Qi F. Research on superplastic bulging forming 5083 aluminum window part for high-speed train [D]. Beijing: China Academy of Machinery Science and Technology, 2018
2 齐 飞. 高速列车5083铝合金车窗超塑气胀成形工艺研究 [D]. 北京: 机械科学研究总院, 2018
3 Mukherjee A K. Deformation mechanisms in superplasticity [J]. Annu. Rev. Mater. Sci., 1979, 9: 191
doi: 10.1146/annurev.ms.09.080179.001203
4 Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity [J]. Metall. Mater. Trans., 1976, 7A: 1225
5 Miller D A, Langdon T G. An analysis of cavity growth during superplasticity [J]. Metall. Trans., 1979, 10A: 1869
6 Wang J, Li G Y, Yang W J, et al. Study on cavity in superplastic deformation of 7B04 aluminum alloy [J]. J. Mater. Metall., 2018, 17: 293
6 王 建, 李光宇, 杨文静 等. 7B04铝合金超塑变形空洞研究 [J]. 材料与冶金学报, 2018, 17: 293
7 Guo J T, Chen R S, Li G S. Superplasticity and cavity stringers in a multiphase NiAl-based intermetallic alloy [J]. J. Mater. Process. Technol., 2003, 139: 337
doi: 10.1016/S0924-0136(03)00540-5
8 Wen X. Research on superplasticity and cavity behavior of Al-Zn-Mg-Cu alloy [D]. Shenyang: Northeastern University, 2015
8 温 学. 铝锌镁铜合金超塑性及空洞行为的研究 [D]. 沈阳: 东北大学, 2015
9 Jiang X G, Cui J Z, Ma L X. Cavity growth behavior of 7475 aluminum alloy in superplastic deformation [J]. J. Northeast Univ. Technol., 1991, 12: 48
9 蒋兴钢, 崔建忠, 马龙翔. 7475铝合金超塑变形空洞长大的研究 [J]. 东北工学院学报, 1991, 12: 48
10 Li S. Research on superplastic forming/diffusion bonding of 5A70 aluminum alloy [D]. Beijing: University of Science and Technology Beijing, 2019
10 李 升. 5A70铝合金超塑性成形/扩散连接研究 [D]. 北京: 北京科技大学, 2019
11 Chokshit A H, Mukherjee A K. An analysis of cavity nucleation in superplasticity [J]. Acta Metall., 1989, 37: 3007
doi: 10.1016/0001-6160(89)90337-4
12 Chokshi A H. The development of cavity growth maps for superplastic materials [J]. J. Mater. Sci., 1986, 21: 2073
doi: 10.1007/BF00547949
13 Hancock J W. Creep cavitation without a vacancy flux [J]. Metal Sci., 1976, 10: 319
14 Nicolaou P D, Semiatin S L, Ghosh A K. An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materials [J]. Metall. Mater. Trans., 2000, 31A: 1425
15 Cao F R, Li Y L, Ding H, et al. Low-temperature superplasticity of a ultralight fine-grained Mg-8.4wt%Li alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2006, 27: 1351
15 曹富荣, 李英龙, 丁 桦 等. 超轻细晶Mg-8.4Li合金的低温超塑性 [J]. 东北大学学报(自然科学版), 2006, 27: 1351
16 Chokshi A H, Mukherjee A K, Langdon T G. Superplasticity in advanced materials [J]. Mater. Sci. Eng., 1993, 10R: 237
17 Wang J, Yang W J, Li Z L, et al. Superplastic behavior and deformation mechanism of 7B04 al-alloy [J]. Chin. J. Mater. Res., 2018, 32: 675
17 王 建, 杨文静, 李卓梁 等. 7B04铝合金的超塑变形行为及其机理 [J]. 材料研究学报, 2018, 32: 675
18 Jiang X G, Earthman J C, Mohamed F A. Cavitation and cavity-induced fracture during superplastic deformation [J]. J. Mater. Sci., 1994, 29: 5499
doi: 10.1007/BF00349941
19 Kim W J, Taleff E, Sherby O D. A proposed deformation mechanism for high strain-rate superplasticity [J]. Scrip. Metall. Mater., 1995, 32: 1625
doi: 10.1016/0956-716X(95)00246-R
20 Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces [J]. Arch. Ration. Mech. Anal., 1975, 57: 291
doi: 10.1007/BF00261375
21 Jiang X G, Cui J Z, Ma L X. A simple formula for cavity growth rate considering cavity interlinkage during superplastic deformation [J]. Mater. Sci. Eng., 1994, 174A: L9
22 Gurtin M E, Murdoch A I. Surface stress in solids [J]. Int. J. Solids Struct., 1978, 14: 431
doi: 10.1016/0020-7683(78)90008-2
23 Raj R, Ashby M F. Intergranular fracture at elevated temperature [J]. Acta Metall., 1975, 23: 653
doi: 10.1016/0001-6160(75)90047-4
24 Raj R. Nucleation of cavities at second phase particles in grain boundaries [J]. Acta Metall., 1978, 26: 995
doi: 10.1016/0001-6160(78)90050-0
25 Stroh A N. A theory of the fracture of metals [J]. Adv. Phys., 1957, 6: 418
doi: 10.1080/00018735700101406
26 Stroh A N. The formation of cracks as a result of plastic flow [J]. Proc. Roy. Soc., 1954, 223A: 404
27 Jiang X G, Cui J Z, Ma L X. A cavity nucleation model during high temperature creep deformation of metals [J]. J. Univ. Sci. Technol. Beijing, 1993, 15: 305
27 蒋兴钢, 崔建忠, 马龙翔. 一个新的金属高温蠕变空洞形核理论模型 [J]. 北京科技大学学报, 1993, 15: 305
28 Cao F R, Zhou B J. Modeling of deformation energy at elevated temperatures and its application in Mg-Li-Al-Y alloy [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2434
doi: 10.1016/S1003-6326(17)60270-X
29 Weertman J. Compressional creep of tin single crystals [J]. J. Appl. Phys., 1957, 28: 196
30 Gertsman V Y, Valiev R Z, Kaibyshev O A. On the energy change during the grain boundary structure recovery from non-equilibrium state to equilibrium state [J]. Phys. Status Solidi, 2010, 91A: K119
31 Paidar V, Takeuchi S. Superplastic deformation carried by grain boundaries [J]. Acta Metall. Mater., 1992, 40: 1773
doi: 10.1016/0956-7151(92)90120-4
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.