Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 453-462    DOI: 10.11901/1005.3093.2022.267
  研究论文 本期目录 | 过刊浏览 |
Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能
李延伟1,2, 罗康1, 姚金环1()
1.桂林理工大学化学与生物工程学院 广西电磁化学功能物质重点实验室 桂林 541004
2.桂林理工大学材料科学与工程学院 有色金属材料及其加工新技术省部共建教育部重点实验室 桂林 541004
Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient
LI Yanwei1,2, LUO Kang1, YAO Jinhuan1()
1.Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
2.Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
引用本文:

李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
Yanwei LI, Kang LUO, Jinhuan YAO. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. Chinese Journal of Materials Research, 2023, 37(6): 453-462.

全文: PDF(12354 KB)   HTML
摘要: 

以十二烷基硫酸钠(SDS)为辅助剂用均相沉淀法制备出具有微/纳分级结构的α-Ni(OH)2材料并使用XRD、SEM、FT-IR、TGA和XPS等手段进行表征,研究了SDS对其结构和储锂性能的影响。结果表明,在制备过程中使用SDS可细化α-Ni(OH)2的晶粒并有助于形成更加开放的微/纳米分级形貌;在n(SDS)/n(Ni2+)为2∶10的条件下制备的α-Ni(OH)2储锂性能最佳,在2 A·g-1电流密度下循环40次后其比容量保持在800 mAh·g-1,在3 A·g-1大电流密度下其可逆比容量仍达到710 mAh·g-1,还表现出显著的赝电容效应(在0.9 mV·s-1下其赝电容贡献率高达84.2%)。

关键词 无机非金属材料氢氧化镍均相沉淀法负极材料十二烷基硫酸钠锂离子电池    
Abstract

α-Ni(OH)2 materials with micro/nano hierarchical structure were prepared by a facile homogeneous precipitation method with sodium dodecyl sulfate (SDS) as accessory ingredient. It was found that the introduction of SDS can refine the grain size of α-Ni(OH)2 and facilitate the formation of micro/nano hierarchical morphology with a more open structure as evidenced by XRD, SEM, FT-IR, TGA, and XPS analysis. Results of electrochemical test demonstrate that the α-Ni(OH)2 sample synthesized with the n(SDS)/n(Ni2+) of 2∶10 exhibits the best lithium ions storage performance. After 40 cycles at the current density of 2 A·g-1 the α-Ni(OH)2 sample maintained a specific capacity of 800 mAh·g-1; even at the high current density of 3 A·g-1 it still delivered a reversible specific capacity of 710 mAh·g-1. Moreover, it shows a significant pseudo-capacitive effect during discharge/charge processes (the pseudo-capacitive contribution to the total stored charge is as high as 84.2% at 0.9 mV·s-1).

Key wordsinorganic non-metallic materials    nickel hydroxide    homogeneous precipitation method    anode materials    sodium dodecyl sulfate    lithium-ion batteries
收稿日期: 2022-05-11     
ZTFLH:  TQ152  
基金资助:国家自然科学基金(22065010)
通讯作者: 姚金环,教授,yaojinhuan@126.com,研究方向为湿法冶金与电池电化学
Corresponding author: YAO Jinhuan, Tel: (0773)2538354, E-mail: yaojinhuan@126.com
作者简介: 李延伟,男,1979年生,教授
图1  SDS用量不同的Ni(OH)2样品的XRD谱和TGA图、NS-0和NS-20样品的FT-IR对比、NS-0和NS-20的Ni 2p XPS谱以及NS-20的S 2p XPS谱
SamplesCrystal plane2θ / (o)

Interlayer distance

/ nm

Average grain size

/ nm

NS-0(001)12.210.72435.6
NS-10(001)12.100.73243.2
NS-20(001)12.060.73353.0
NS-30(001)12.050.73383.0
表1  不同SDS添加量样品的晶格参数和平均晶粒尺寸
图2  NS-0、NS-10、NS-20和NS-30样品的SEM照片
图3  NS-0、NS-10、NS-20和NS-30样品在0.1 mV·s-1扫描速度下的CV曲线以及四个样品循环性能的对比、NS-0和NS-20样品在不同循环次数下的充放电曲线
Materials

Current density

/ A·g-1

Specific discharge capacity

/ mAh·g-1

Voltage window

/ V vs. Li/Li+

Reference
NS-202.0800 mAh·g-1 after 40 cycles0~3.0This work
α-Ni(OH)21.0743 mAh·g-1 after 50 cycles0~3.0[35]
Co-Ni-LDH0.05450.4 mAh·g-1 after 40 cycles0~3.0[36]
Ni-Co-LDH0.1335.4 mAh·g-1 after 50 cycles0~3.0[37]
Ni(OH)2-CTAB0.5952 mAh·g-1 after 25 cycles0~3.0[38]
Fe-Ni-LDH0.21080 mAh·g-1 after 30 cycles0~3.0[39]
Ni- Fe-OH0.85540 mAh·g-1 after 50 cycles0~3.0[40]
Ni(OH)Cl0.21236 mAh·g-1 after 150 cycles0~3.0[9]
表2  NS-20与用于LIBs的其他氢氧化镍基负极材料的循环性能的比较
图4  四个样品的倍率性能对比、NS-0、NS-20和NS-30样品在不同电流密度下的充放电曲线
图5  NS-0和NS-20样品在不同扫描速度下的CV曲线、NS-20样品在0.5 mV·s-1扫描速度下的CV曲线、NS-10、NS-20和NS-30样品在不同扫描速度下的赝电容贡献百分比
图6  NS-0、NS-10、NS-20和NS-30样品20次循环后的Nyquist图、Bode图和等效电路
1 Gao R Z, Li X D, Liu W F, et al. Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C [J]. Chin. J. Mater. Res., 2018, 32(9): 713
1 高荣贞, 李晓冬, 刘文凤 等. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能 [J]. 材料研究学报, 2018, 32(9): 713
2 Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@C composite and its lithium storage performance [J]. Chin. J. Mater. Res., 2020, 34(8): 591
2 李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 34(8): 591
doi: 10.11901/1005.3093.2019.604
3 Shen X, Zhang X Q, Ding F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect [J]. Energy Mater. Adv., 2021, 2021: 1205324
4 Yao L H, Cao W Q, Zhao J G, et al. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage [J]. J. Mater. Sci. Technol., 2022, 127: 48
doi: 10.1016/j.jmst.2022.04.010
5 Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries [J]. Adv. Energy Mater., 2020, 10(1): 1902485
doi: 10.1002/aenm.v10.1
6 Han C, Cao W Q, Cao M S. Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries [J]. Inorg. Chem. Front., 2020, 7(21): 4101
doi: 10.1039/D0QI00892C
7 Kim H, Choi W I, Jang Y, et al. Exceptional lithium storage in a Co(OH)2 Anode: Hydride formation [J]. ACS Nano, 2018, 12(3): 2909
doi: 10.1021/acsnano.8b00435
8 Hu Y Y, Liu Z G, Nam K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes [J]. Nat. Mater., 2013, 12(12): 1130
doi: 10.1038/nmat3784
9 Lim S H, Park G D, Jung D S, et al. Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions [J]. J. Mater. Chem., 2020, 8A(4) : 1939
10 Yao J H, Li Y W, Huang R S, et al. Crucial role of water content on the electrochemical performance of α-Ni(OH)2 as an anode material for lithium-ion batteries [J]. Ionics, 2021, 27(1): 65
doi: 10.1007/s11581-020-03793-1
11 Li Y W, Pan G L, Xu W Q, et al. Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide [J]. J. Power Sources, 2016, 307: 114
doi: 10.1016/j.jpowsour.2015.12.129
12 Cao W Q, Wang W Z, Shi H L, et al. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano Res., 2018, 11(3): 1437
doi: 10.1007/s12274-017-1759-0
13 Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective [J]. Adv. Energy Mater., 2016, 6(17): 1600374
doi: 10.1002/aenm.v6.17
14 Zheng M B, Tang H, Li L L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries [J]. Adv. Sci., 2018, 5(3): 1700592
doi: 10.1002/advs.v5.3
15 Inamdar A I, Chavan H S, Aqueel Ahmed A T, et al. Macroporous Cu(OH)2 nanorod network fabricated directly on Cu foil as binder-free Lithium-ion battery anode with ultrahigh capacity [J]. J. Alloys Compd., 2020, 829: 154593
doi: 10.1016/j.jallcom.2020.154593
16 Delmas C, Tessier C. Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity [J]. J. Mater. Chem., 1997, 7(8): 1439
doi: 10.1039/a701037k
17 Zhang Y Q, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries [J]. Adv. Mater., 2020, 32(7): 1905923
doi: 10.1002/adma.v32.7
18 Li Y W, Huang R S, Ji J C, et al. Facile preparation of α-Ni(OH)2/graphene nanosheet composite as a cathode material for alkaline secondary batteries [J]. Ionics, 2019, 25(10): 4787
doi: 10.1007/s11581-019-03053-x
19 Tzounis L, Herlekar S, Tzounis A, et al. Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films [J]. J. Nanomater., 2017, 2017: 3852310
20 Sotiles A R, Gomez N A G, Wypych F. Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M6 2+Al3(OH)18] [A +(SO4)2] 12H2O (M 2+=Mn, Mg, Zn; A +=Li, Na, K) [J]. J. Therm. Anal. Calorim., 2020, 140(4): 1715
doi: 10.1007/s10973-019-08955-6
21 Li Y W, Yao J H, Zhu Y X, et al. Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide [J]. J. Power Sources, 2012, 203: 177
doi: 10.1016/j.jpowsour.2011.11.081
22 Wu X, Li W, Ke G, et al. Multiple anionic Ni(SO4)0.3(OH)1.4 nanobelts/reduced graphene oxide enabled by enhanced multielectron reactions with superior lithium storage capacity [J]. Chem. Eng. J., 2021, 426: 131863
doi: 10.1016/j.cej.2021.131863
23 Lim S Y, Lee J H, Kim S, et al. Lattice water for the enhanced performance of amorphous iron phosphate in sodium-ion batteries [J]. ACS Energy Lett., 2017, 2(5): 998
doi: 10.1021/acsenergylett.7b00120
24 Huang R S, Yao J H, Liang X L, et al. Electrochemical performances of Ni/Al-LDHs/rGO composites prepared by homogeneous precipitation method [J]. J. Liaoning Shihua Univ., 2020, 40(4): 80
24 黄任枢, 姚金环, 梁晓丽 等. 均相沉淀法制备Ni/Al-LDHs/rGO复合电极材料的电化学性能 [J]. 辽宁石油化工大学学报, 2020, 40(4): 80
25 Li L, Dai Y P, Xu Q Q, et al. Interlayer expanded nickel-iron layered double hydroxide by intercalation with sodium dodecyl sulfate for enhanced oxygen evolution reaction [J]. J. Alloys Compd., 2021, 882: 160752
doi: 10.1016/j.jallcom.2021.160752
26 Samaele N, Amornpitoksuk P, Suwanboon S. Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method [J]. Powder Technol., 2010, 203(2): 243
doi: 10.1016/j.powtec.2010.05.014
27 Zhang Y, Zhao Y F, An W D, et al. Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance [J]. J. Mater. Chem., 2017, 5A(20) : 10039
28 Yao J H, Huang R S, Jiang J Q, et al. Lithium storage performance of α-Ni(OH)2 regulated by partial interlayer anion exchange [J]. Ionics, 2021, 27(3): 1125
doi: 10.1007/s11581-020-03889-8
29 Yao J H, Jin T F, Li Y W, et al. Electrochemical performance of Fe2(SO4)3 as a novel anode material for lithium-ion batteries [J]. J. Alloys Compd., 2021, 886: 161238
doi: 10.1016/j.jallcom.2021.161238
30 Kim H, Lee W, Choi W, et al. Crystal water-assisted additional capacity for nickel hydroxide anode materials [J]. Adv. Funct. Mater., 2022, 32: 2110828
doi: 10.1002/adfm.v32.17
31 Jin X Y, Li Y W, Yao J H, et al. Enhancing the lithium storage performance of α-Ni(OH)2 by Zn2+ doping [J]. J. Electroanal. Chem., 2022, 922: 116747
doi: 10.1016/j.jelechem.2022.116747
32 Caballero A, Hernán L, Morales J, et al. Electrochemical properties of ultrasonically prepared Ni(OH)2 nanosheets in lithium cells [J]. J. Power Sources, 2013, 238: 366
doi: 10.1016/j.jpowsour.2013.04.033
33 Li X, Sun X H, Hu X D, et al. Review on comprehending and enhancing the initial coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries [J]. Nano Energy, 2020, 77: 105143
doi: 10.1016/j.nanoen.2020.105143
34 Liu C J, Shang W. Studies on electrochemical activity of amorphous anode materials Ni(OH)2 [J]. Rare Metal Mater. Eng., 2006, 35(10): 1522
34 刘长久, 尚 伟. 电极材料非晶态氢氧化镍的电化学活性 [J]. 稀有金属材料与工程, 2006, 35(10): 1522
35 Yao J H, Li Y W, Pan G L, et al. Electrochemical property of hierarchical flower-like α-Ni(OH)2 as an anode material for lithium-ion batteries [J]. Solid State Ionics, 2021, 363: 115595
doi: 10.1016/j.ssi.2021.115595
36 Shi L L, Chen Y X, He R Y, et al. Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries [J]. Phys. Chem. Chem. Phys., 2018, 20(24): 16437
doi: 10.1039/c8cp01681j pmid: 29873366
37 Lu Y J, Du Y J, Li H B. Template-sacrificing synthesis of Ni-Co layered double hydroxides polyhedron as advanced anode for lithium ions battery [J]. Front. Chem., 2020, 8: 581653
doi: 10.3389/fchem.2020.581653
38 Wang H T, Huang R S, Li C X. Effect of CTAB addition on the lithium storage performance of Ni(OH)2 prepared by homogeneous precipitation method [J]. Guangdong Chemical Industry, 2019, 46(7): 96
38 王洪涛, 黄任枢, 黎呈享. CTAB对均相沉淀法制备Ni(OH)2电极材料储锂性能的影响 [J]. 广东化工, 2019, 46(7): 96
39 Li Y W, Huang R S, Pan G L, et al. High-tap-density Fe-doped nickel hydroxide with enhanced lithium storage performance [J]. ACS Omega, 2019, 4(4): 7759
doi: 10.1021/acsomega.9b00579 pmid: 31459865
40 Niu K Y, Lin F, Fang L, et al. Structural and chemical evolution of amorphous nickel iron complex hydroxide upon lithiation/delithiation [J]. Chem. Mater., 2015, 27(5): 1583
doi: 10.1021/cm5041375
41 Choi C, Ashby D S, Butts D M, et al. Achieving high energy density and high power density with pseudocapacitive materials [J]. Nat. Rev. Mater., 2020, 5(1): 5
doi: 10.1038/s41578-019-0142-z
42 Li Y W, Huang Y, Zheng Y Y, et al. Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries [J]. J. Power Sources, 2019, 416: 62
doi: 10.1016/j.jpowsour.2019.01.080
43 Cheah Y L, Gupta N, Pramana S S, et al. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries [J]. J. Power Sources, 2011, 196(15): 6465
doi: 10.1016/j.jpowsour.2011.03.039
44 Yan B, Li X F, Fu X Y, et al. An elaborate insight of lithiation behavior of V2O5 anode [J]. Nano Energy, 2020, 78: 105233
doi: 10.1016/j.nanoen.2020.105233
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.