Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 291-300    DOI: 10.11901/1005.3093.2022.231
  研究论文 本期目录 | 过刊浏览 |
N掺杂生物炭的制备及其对Co2+ 的吸附性能
余谟鑫1,2, 张书海1, 朱博文1, 张晨1, 王晓婷1,3(), 鲍佳敏1, 邬翔1
1.安徽工业大学化学与化工学院 马鞍山 243000
2.中钢天源股份有限公司 马鞍山 243000
3.马钢集团股份有限公司 马鞍山 243003
Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+
YU Moxin1,2, ZHANG Shuhai1, ZHU Bowen1, ZHANG Chen1, WANG Xiaoting1,3(), BAO Jiamin1, WU Xiang1
1.School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243000, China
2.Sinosteel New Materials Co. Ltd., Ma'anshan 243000, China
3.Magang (Group) Holding Co. Ltd., Ma'anshan 243003, China
引用本文:

余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
Moxin YU, Shuhai ZHANG, Bowen ZHU, Chen ZHANG, Xiaoting WANG, Jiamin BAO, Xiang WU. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. Chinese Journal of Materials Research, 2023, 37(4): 291-300.

全文: PDF(9012 KB)   HTML
摘要: 

在芦荟叶皮中加入尿素用水热法制备炭前驱体,然后将其以不同的终温热解制备出N掺杂生物炭(NBC x )。使用扫描电子显微镜(SEM)、氮气吸附-脱附仪(BET)、X射线光电子能谱仪(XPS)、傅立叶红外光谱仪(FTIR)和动电位分析仪(Zeta)等手段进行表征,研究其对废水中Co2+的吸附性能。结果表明:NBC x 的表面有明显的层块堆积。NBC x 具有分级多孔结构,芦荟叶皮与尿素的质量比为2∶1、热解终温为800℃时制备的NBC800其比表面积为32 m2·g-1,总孔体积为0.04 cm3·g-1,其中非微孔比例高达75%。NBC800表面含有丰富的含氧和含氮官能团,N含量和O含量(摩尔分数)分别高达3.89%和46.35%,可与Co2+发生离子交换、静电吸附、络合作用和共沉淀等反应。用Langmuir等温线模型能很好地描述NBC800对Co2+的吸附过程,为单分子层吸附,最大理论吸附量高达228.31 mg·g-1。拟二级吸附动力学模型表明,吸附进行得较快。

关键词 无机非金属材料芦荟叶皮生物质炭N掺杂Co2+化学吸附    
Abstract

The nitrogen-doped biochar (NBC x ) was prepared from aloe vera leaf rind with adding urea as nitrogen source, namely the biochar (NBC x ) was first prepared by hydrothermal method, and then the mixture of NBC x and urea was pyrolyzed at different temperatures. The as-made NBC x was characterized by SEM、BET、XPS、FTIR and Zeta, and its application for adsorption of Co2+ in waste water was investigated. The results show that the NBC x has a hierarchical porous structure with a lamellar-like surface with many small flakes. The NBC800, prepared with the mass ratio 2∶1 for aloe vera leaf rind to urea by final pyrolysis temperature of 800℃, presents a specific surface area of 32 m2·g-1, and a total pore volume of 0.04 cm3·g-1 with the non-microporous ratio of up to 75%. The surface of NBC800 is rich in oxygen and nitrogen functional groups, and the content of N and O (mole fraction) is up to 3.89% and 46.35% respectively, which can react with Co2+ through ion exchange, electrostatic adsorption, complexation and co-precipitation. The Langmuir model fits well with the adsorption isotherm of Co2+ on NBC x, which demonstrated that the adsorption is monolayered. The maximum adsorption capacity of Co2+ on NBC800 is up to 228.31 mg·g-1. The quasi-second-order kinetic model can describe the adsorption process better. The adsorption rate is mainly controlled by chemical adsorption.

Key wordsinorganic non-metallic materials    aloe vera leaf rind    biochar    N-doped    Co2+    chemical adsorption
收稿日期: 2022-04-24     
ZTFLH:  O647.3  
基金资助:安徽省博士后科研项目(2021B547);安徽省教育厅自然科学研究项目(KJ2021A0399)
作者简介: 余谟鑫,男,1978 年生,博士
图1  NBC x 吸附Co2+前后的SEM照片
图2  NBC x 吸附Co2+前后的氮气吸脱附曲线
图3  NBC x 吸附Co2+前后的孔径分布
Samples

Dap

/nm

SBET

/m2·g-1

Smic

/m2·g-1

Vt

/cm3·g-1

Vmic

/cm3·g-1

Non-Vmic/Vt
NBC6004.5833180.030.020.33
NBC7003.4269480.050.030.40
NBC8005.6832150.040.010.75
NBC800-Co2+4.003252490.300.150.50
表1  NBC x 比表面积和孔隙结构参数
图4  NBC800吸附Co2+前后的XPS谱图
SamplesC1sO1sN1sCo2p
NBC60082.416.41.2-
NBC70080.917.41.7-
NBC80049.7646.353.89-
NBC800-Co2+40.5441.613.9213.93
表2  XPS分析元素摩尔分数
Samples-OHC=OC-OOxide-NGraphitic-NPyrolic-NPyridinic-NCo3+Co2+
NBC6004.636.375.400.190.240.380.39--
NBC7004.677.854.880.160.170.750.62--
NBC80014.2021.6910.460.360.412.051.07--
NBC800-Co2+13.2514.2814.080.421.121.510.874.978.96
表3  XPS分析中O1s、N1s和Co2p谱图的官能团摩尔分数
图5  NBC800吸附Co2+前后的FTIR图
图6  NBC x 在不同pH值下的电位
图7  NBC x 吸附Co2+的吸附等温曲线和Langmuir拟合
图8  NBC x 对Co2+的吸附动力学曲线和NBC x 的吸附动力学拟合
图9  NBC800对Co2+的吸附穿透曲线
图10  吸附剂质量对吸附的影响曲线
图11  NBC x 的吸附机理
1 Saad D R, Alismaeel Z T, Abbar A H. Cobalt removal from simulated wastewaters using a novel flow-by fixed bed bio-electrochemical reactor[J]. Chem. Eng. Process. Process Intensif., 2020, 156: 108097
doi: 10.1016/j.cep.2020.108097
2 Lawan I Y, Yamta S D, Hudu A, et al. Adsorption capabilities of activated carbon derived from detarium microcarpum seeds in removing Co2+ and Pb2+ from wastewater[J]. Earthline J. Chem. Sci., 2020, 3: 167
3 Sayadi M H, Rezaei M R, Rezaei A. Fraction distribution and bioavailability of sediment heavy metals in the environment surrounding MSW landfill: a case study[J]. Environ. Monit. Assess., 2015, 187(1): 4110
doi: 10.1007/s10661-014-4110-1 pmid: 25433542
4 Lucaci A R, Bulgariu D, Ahmad I, et al. Potential use of biochar from various waste biomass as biosorbent in Co(II) removal processes[J]. Water, 2019, 11(8): 1565
doi: 10.3390/w11081565
5 Mandal S, Calderon J, Marpu S B, et al. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: characterization, adsorption kinetics, and isotherm studies[J]. J. Contam. Hydrol., 2021, 243: 103869
doi: 10.1016/j.jconhyd.2021.103869
6 Peyravi A, Feizbakhshan M, Hashisho Z, et al. Purge gas humidity improves microwave-assisted regeneration of polymeric and zeolite adsorbents[J]. Sep. Purif. Technol., 2022, 288: 120640
doi: 10.1016/j.seppur.2022.120640
7 Liu Z, Solliec M, Papineau I, et al. Elucidating the removal of organic micropollutants on biological ion exchange resins[J]. Sci. Total Environ., 2022, 808: 152137
doi: 10.1016/j.scitotenv.2021.152137
8 Upadhyay U, Sreedhar I, Singh S A, et al. Recent advances in heavy metal removal by chitosan based adsorbents[J]. Carbohydr. Polym., 2021, 251: 117000
doi: 10.1016/j.carbpol.2020.117000
9 Li A Y, Zhang Y, Ge W Z, et al. Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: Mechanism and application[J]. Bioresour. Technol., 2022, 347: 126425
doi: 10.1016/j.biortech.2021.126425
10 Mariana M, Khalil H P S A, Mistar E M, et al. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption[J]. J. Water Process Eng., 2021, 43: 102221
doi: 10.1016/j.jwpe.2021.102221
11 Liu M S, Almatrafi E, Zhang Y, et al. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: applications and practical evaluations[J]. Sci. Total Environ., 2022, 806: 150531
doi: 10.1016/j.scitotenv.2021.150531
12 Jjagwe J, Olupot P W, Menya E, et al. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review[J]. J. Bioresourc. Bioprod., 2021, 6(4): 292
doi: 10.1016/j.jobab.2021.03.003
13 Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renew. Sust. Energy Rev., 2018, 87: 1
14 Yu J X, Yu M X, Kuai L, et al. Preparation of high oxygen porous carbon from walnut peel and its adsorption properties for Ni2+ [J]. Chem. J. Chin. Univ., 2020, 41(11): 2464
14 余健星, 余谟鑫, 蒯 乐 等. 核桃青皮制备高含氧量多孔炭及其对Ni2+的吸附性能[J]. 高等学校化学学报, 2020, 41(11): 2464
15 Aboli E, Jafari D, Esmaeili H. Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves[J]. Carbon Lett., 2020, 30(6): 683
doi: 10.1007/s42823-020-00141-1
16 Arnelli, Wahyuningrum V N, Fauziah F, et al. Synthesis of surfactant modified activated carbon (SMAC) from rice husks as Ni(II) and Cr(VI) adsorbent[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 509: 012023
17 Abedi S, Mousavi H Z, Asghari A. Investigation of heavy metal ions adsorption by magnetically modified aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies[J]. Desalin. Water Treat., 2016, 57(29): 13747
doi: 10.1080/19443994.2015.1060536
18 Giannakoudakis D A, Hosseini-Bandegharaei A, Tsafrakidou P, et al. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review[J]. J. Environ. Manage., 2018, 227: 354
doi: S0301-4797(18)30938-1 pmid: 30199731
19 Bakry A M, Awad F S, Bobb J A, et al. Multifunctional binding sites on Nitrogen-doped carboxylated porous carbon for highly efficient adsorption of Pb(II), Hg(II), and Cr(VI) Ions[J]. ACS Omega, 2020, 5(51): 33090
doi: 10.1021/acsomega.0c04695 pmid: 33403271
20 Yuan Y, An Z X, Zhang R J, et al. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon[J]. J. Cleaner Prod., 2021, 293: 126215
doi: 10.1016/j.jclepro.2021.126215
21 Kasera N, Hall S, Kolar P. Effect of surface modification by nitrogen-containing chemicals on morphology and surface characteristics of N-doped pine bark biochars[J]. J. Environ. Chem. Eng., 2021, 9(2): 105161
doi: 10.1016/j.jece.2021.105161
22 Gunjate J K, Meshram Y K, Khope R U, et al. Adsorption based recovery of cobalt using chemically modified activated carbon[J]. Mater. Today Proc., 2020, 29: 1150
23 Ullah M, Nazir R, Khan M, et al. The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells[J]. Soil Water Res., 2019, 15(1): 30
doi: 10.17221/212/2018-SWR
24 Bilal M, Ali J, Hussain N, et al. Removal of Pb(II) from wastewater using activated carbon prepared from the seeds of Reptonia buxifolia [J]. J. Serb. Chem. Soc., 2020, 85(2): 265
doi: 10.2298/JSC181108001B
25 Kwak J H, Islam S, Wang S Y, et al. Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation[J]. Chemosphere, 2019, 231: 393
doi: 10.1016/j.chemosphere.2019.05.128
26 Saad M J, Sajab M S, Busu W N W, et al. Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH[J]. Sains Malays., 2020, 49(11): 2721
27 Mustapha S, Shuaib D T, Ndamitso M M, et al. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods[J]. Appl. Water Sci., 2019, 9: 142
doi: 10.1007/s13201-019-1021-x
28 Li A Y, Deng H, Jiang Y H, et al. Superefficient removal of heavy metals from wastewater by Mg-Loaded biochars: adsorption characteristics and removal mechanisms[J]. Langmuir, 2020, 36(31): 9160
doi: 10.1021/acs.langmuir.0c01454 pmid: 32644798
29 Yan C Z, Kim M G, Hwang H U, et al. Adsorption of heavy metals using activated carbon synthesized from the residues of medicinal herbs[J]. Theor. Found. Chem. Eng., 2020, 54(5): 973
doi: 10.1134/S0040579520050474
30 Sun J T, Li M F, Zhang Z H, et al. Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon[J]. Appl. Surf. Sci., 2019, 471: 615
doi: 10.1016/j.apsusc.2018.12.050
31 Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy Fuels, 2020, 34(12): 15557
doi: 10.1021/acs.energyfuels.0c03107
32 Dinh V C, Hou C H, Dao T N. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups[J]. Chemosphere, 2022, 293: 133622
doi: 10.1016/j.chemosphere.2022.133622
33 Lin S W, Yang X, Liu L H, et al. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: mechanism and application[J]. J. Environ. Manage., 2022, 301: 113921
doi: 10.1016/j.jenvman.2021.113921
34 Yang Q, Cui P X, Liu C, et al. In situ stabilization of the adsorbed Co2+ and Ni2+ in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate[J]. J. Hazard. Mater., 2021, 416: 126215
doi: 10.1016/j.jhazmat.2021.126215
35 Gholizadeh M, Hu X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. J. Environ. Chem. Eng., 2021, 9: 105830
doi: 10.1016/j.jece.2021.105830
36 Chen W H, Hoang A T, Nižetić S, et al. Biomass-derived biochar: from production to application in removing heavy metal-contaminated water[J]. Process Saf. Environ. Prot., 2022, 160: 704
doi: 10.1016/j.psep.2022.02.061
37 Yuan X L, An N H, Zhu Z X, et al. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions[J]. Process Saf. Environ. Prot., 2018, 119: 320
doi: 10.1016/j.psep.2018.08.012
38 Kyzas G Z, Deliyanni E A, Matis K A. Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption[J]. Colloids Surf., 2016, 490A: 74
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.