Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 633-640    DOI: 10.11901/1005.3093.2022.479
  研究论文 本期目录 | 过刊浏览 |
g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解
任富彦1,3, 欧阳二明2()
1.南昌大学工程建设学院 南昌 330031
2.南昌大学资源与环境学院 南昌 330031
3.新疆科技学院会计学院 库尔勒 830091
Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3
REN Fuyan1,3, OUYANG Erming2()
1.School of Engineering and Construction, Nanchang University, Nanchang 330031, China
2.School of Resources and Environment, Nanchang University, Nanchang 330031, China
3.School of Accounting, Xinjiang University of Science and Technology, Kuerle 830091, China
引用本文:

任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
Fuyan REN, Erming OUYANG. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. Chinese Journal of Materials Research, 2023, 37(8): 633-640.

全文: PDF(7373 KB)   HTML
摘要: 

使用液相沉淀法和热聚合法制备Bi2O3/g-C3N4复合催化剂,用SEM、XRD、XPS、FT-IR和紫外可见漫反射等手段对其微观形貌、晶体结构和光催化性能进行了表征。结果表明,这种Bi2O3/g-C3N4复合光催化剂的形貌较好、分布均匀,具有较高的光催化性能;复合催化剂Bi2O3/g-C3N4-30%的光催化性能最好,用300 W模拟可见光氙灯照射2 h后对盐酸四环素(TCH)的去除率为70%;捕获实验的结果表明,光催化降解盐酸四环素(TCH)的主要活性物种为超氧自由基(·O2-)。

关键词 无机非金属材料光催化抗生素降解Bi2O3半导体材料    
Abstract

Composite catalysts of Bi2O3/g-C3N4 were successfully prepared by means of liquid-phase precipitation and thermal polymerization methods. The microscopic morphology, crystal structure and photocatalytic properties of the composite catalysts were characterized by SEM, XRD, XPS, FT-IR and UV-Vis diffuse reflection etc. The results show that the prepared Bi2O3/g-C3N4 composite photocatalyst has good morphology and uniformity of grains. The Bi2O3/g-C3N4 composite catalyst showed good photocatalytic performance. Among all the prepared composite catalysts, the composite catalyst Bi2O3/g-C3N4-30% had the best photocatalytic performance. The removal rate of tetracycline hydrochloride (TCH) by Bi2O3/g-C3N4-30% composite catalyst was 70%, which was 1.66 times that of pure Bi2O3 and 1.44 times that of pure g-C3N4. In addition, the photocatalytic degradation of tetracycline hydrochloride was verified by capture experiments. The main active species of (TCH) is superoxide radical (·O2-).

Key wordsinorganic non-metallic materials    photocatalysis    antibiotics    degradation    Bi2O3    semiconductor materials
收稿日期: 2022-09-06     
ZTFLH:  X703.1  
通讯作者: 欧阳二明,副教授,youmer@ncu.edu.cn,研究方向为水处理理论与技术
Corresponding author: OUYANG Erming, Tel: 15170217718, E-mail: youmer@ncu.edu.cn
作者简介: 任富彦,男,1996年生,硕士
图1  制备Bi2O3/g-C3N4复合材料的示意图
图2  g-C3N4、Bi2O3和Bi2O3/g-C3N4材料的SEM图谱、Bi2O3/g-C3N4材料的TEM图谱及Bi2O3/g-C3N4的EDS图
图3  g-C3N4、Bi2O3和Bi2O3/g-C3N4材料的XRD谱
图4  g-C3N4、Bi2O3和Bi2O3/g-C3N4材料的FT-IR谱
图5  Bi2O3/g-C3N4复合催化剂的XPS图
图6  g-C3N4、Bi2O3和Bi2O3/g-C3N4材料的UV-Vis漫反射光谱和(Ahv)1/2与光子能量(hv)的关系
图7  不同催化剂对TCH的降解效率及其反应过程中的一阶动力学拟合图
图8  Bi2O3/g-C3N4复合材料降解TCH的可循环性
图9  在不同捕获剂条件下盐酸四环素的去除率及其相应的去除率柱状图
1 He Y J, Sutton N B, Rijnaarts H H H, et al. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation [J]. Appl. Catal., 2016, 182B: 132
2 Quyen V T, Kim H J, Kim J, et al. Synthesizing S-doped graphitic carbon nitride for improvement photodegradation of tetracycline under solar light [J]. Solar Energy, 2021, 214: 288
doi: 10.1016/j.solener.2020.12.016
3 Xu L Y, Zhang H, Xiong P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review [J]. Sci. Total Environ., 2021, 753: 141975
doi: 10.1016/j.scitotenv.2020.141975
4 Roy N, Alex S A, Chandrasekaran N, et al. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts [J]. J. Environ. Chem. Eng., 2021, 9: 104796
doi: 10.1016/j.jece.2020.104796
5 Hou X, Wang Z Q, Chen J J, et al. Facile construction of silver-based solid solution heterophase for efficient visible-light-driven photocatalytic degradation of tetracycline [J]. Chem. Eng. J., 2021, 414: 128915
doi: 10.1016/j.cej.2021.128915
6 Wu Y C, Chaing Y C, Huang C Y, et al. Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance [J]. Dyes Pigm., 2013, 98(1): 25
doi: 10.1016/j.dyepig.2013.02.006
7 Leontie L, Caraman M, Delibaş M, et al. Optical properties of bismuth trioxide thin films [J]. Mater. Res. Bull., 2001, 36(9): 1629
doi: 10.1016/S0025-5408(01)00641-9
8 Yu H J, Li J Y, Zhang Y H, et al. Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction [J]. Angew. Chem. Int. Ed., 2019, 58: 3880
doi: 10.1002/anie.v58.12
9 Yakout S M. New efficient sunlight photocatalysts based on Gd, Nb, V and Mn doped alpha-Bi2O3 phase [J]. J. Environ. Chem. Eng., 2020, 8(1): 103644
doi: 10.1016/j.jece.2019.103644
10 Ji R, Ma C C, Ma W, et al. Z-scheme MoS2/Bi2O3 heterojunctions: enhanced photocatalytic degradation performance and mechanistic insight [J]. New J. Chem., 2019, 43(30): 11876
doi: 10.1039/C9NJ02521A
11 Ke J, Liu J, Sun H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation [J]. Appl. Catal., 2017, 200B: 47
12 Che H N, Liu C B, Hu W, et al. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions [J]. Catal. Sci. Technol., 2018, 8(2): 622
doi: 10.1039/C7CY01709J
13 You S Z, Hu Y, Liu X C, et al. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light [J]. Appl. Catal., 2018, 232B: 288
14 Liu H, Luo M, Hu J C, et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance [J]. Appl. Catal., 2013, 140-141B: 141
15 Wang Y C, Liu X Y, Wang X X, et al. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion [J]. Chem. Eng. J., 2021, 419: 129459
doi: 10.1016/j.cej.2021.129459
16 Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2- x Se core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal., 2017, 209B: 110
17 Majdoub M, Anfar Z, Amedlous A. Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications [J]. ACS Nano, 2020, 14(10): 12390
doi: 10.1021/acsnano.0c06116
18 Ali W, Zhang X L, Zhang X X, et al. Improved visible-light activities of g-C3N4 nanosheets by co-modifying nano-sized SnO2 and Ag for CO2 reduction and 2,4-dichlorophenol degradation [J]. Mater. Res. Bull., 2020, 122: 110676
doi: 10.1016/j.materresbull.2019.110676
19 Liu S L, Chen J L, Xu D F, et al. Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication [J]. J. Mater. Res., 2018, 33(10): 1391
doi: 10.1557/jmr.2018.67
20 Xu Q L, Zhang L Y, Yu J G, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications [J]. Mater. Today, 2018, 21(10): 1042
doi: 10.1016/j.mattod.2018.04.008
21 He R A, Zhou J Q, Fu H Q, et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity [J]. Appl. Surf. Sci., 2018, 430: 273
doi: 10.1016/j.apsusc.2017.07.191
22 Zhang L P, Wang G H, Xiong Z Z, et al. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation [J]. Appl. Surf. Sci., 2018, 436: 162
doi: 10.1016/j.apsusc.2017.11.280
23 Alhaddad M, Navarro R M, Hussein M A, et al. Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light [J]. Ceram. Int., 2020, 46(16): 24873
doi: 10.1016/j.ceramint.2020.06.271
24 Xue S, Hou X Y, Xie W H, et al. Dramatic improvement of photocatalytic activity for N-doped Bi2O3/g-C3N4 composites [J]. Mater. Lett., 2015, 161: 640
doi: 10.1016/j.matlet.2015.09.067
25 Yan D, Wu X, Pei J Y, et al. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties [J]. Ceram. Int., 2020, 46(1): 696
doi: 10.1016/j.ceramint.2019.09.022
26 Zada A, Qu Y, Ali S, et al. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path [J]. J. Hazard. Mater., 2018, 342: 715
doi: 10.1016/j.jhazmat.2017.09.005
27 Hernández-Gordillo A, Medina J C, Bizarro M, et al. Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent [J]. Ceram. Int., 2016, 42(10): 11866
doi: 10.1016/j.ceramint.2016.04.109
28 Qi K Z, Zada A, Yang Y, et al. Design of 2D-2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant [J]. Res. Chem. Intermed., 2020, 46(12): 5281
doi: 10.1007/s11164-020-04262-0
29 Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation [J]. Chin. J. Catal., 2021, 42(1): 56
doi: 10.1016/S1872-2067(20)63634-8
30 Zhao K, Khan I, Qi K Z, et al. Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants [J]. Mater. Chem. Phys., 2020, 253: 123322
doi: 10.1016/j.matchemphys.2020.123322
31 Luo Y D, Huang Q Q, Li B, et al. Synthesis and characterization of Cu2O-modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity [J]. Appl. Surf. Sci., 2015, 357: 1072
doi: 10.1016/j.apsusc.2015.09.126
32 Jiang H Y, Liu G, Wang T, et al. In situ construction of α-Bi2O3/gC3N4/β-Bi2O3 composites and their highly efficient photocatalytic performances [J]. RSC Advances, 2015, 113 (5): 92963
33 Geng X Q, Chen S, Lv X, et al. Synthesis of g-C3N4/Bi5O7I microspheres with enhanced photocatalytic activity under visible light [J]. Appl. Surf. Sci., 2018, 462: 18
doi: 10.1016/j.apsusc.2018.08.080
34 Zhao R Y, Sun X X, Jin Y R, et al. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride [J]. J. Mater. Sci., 2019, 54(7): 5445
doi: 10.1007/s10853-018-03278-7
35 Kaur A, Kansal S K. Insitu synthesis, characterization of Z-scheme g-C3N4/Bi2O3 as photocatalyst for degradation of azo dye, Amido black-10B under solar irradiation [J]. Ceram. Int., 2022, 48: 29445
doi: 10.1016/j.ceramint.2022.07.008
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.