Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 635-640    DOI: 10.11901/1005.3093.2021.454
  研究论文 本期目录 | 过刊浏览 |
Cu掺杂金红石型TiO2 的制备及其光催化性能
朱晓东1, 夏杨雯1, 喻强2, 杨代雄1, 何莉莉1, 冯威1()
1.成都大学机械工程学院 成都 610106
2.四川新亚无损检测有限公司 成都 610213
Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property
ZHU Xiaodong1, XIA Yangwen1, YU Qiang2, Yang Daixiong1, HE Lili1, FENG Wei1()
1.School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2.Sichuan Xinya Non-Destructive Testing Co. Ltd, Chengdu 610213, China
引用本文:

朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
Xiaodong ZHU, Yangwen XIA, Qiang YU, Daixiong Yang, Lili HE, Wei FENG. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. Chinese Journal of Materials Research, 2022, 36(8): 635-640.

全文: PDF(9454 KB)   HTML
摘要: 

用溶胶-凝胶法在650℃条件下,制备了Cu掺杂金红石型TiO2光催化剂,使用XRD、SEM、TEM、XPS、BET、PL和DRS等手段对其晶体结构、表面形貌、元素组成与价态、比表面积和光学性质进行了表征。结果表明,纯TiO2是少量锐钛矿与大量金红石组成的混晶,Cu掺杂有利于锐钛矿向金红石的转变,Cu掺杂TiO2全部为金红石。Cu元素以+1价和+2价共存的形式存在于样品中。以罗丹明B为目标污染物、以氙灯为紫外可见光光源考察这种光催化剂的活性时发现,Cu掺杂降低了光催化活性,Cu掺杂能抑制光生电子与空穴的复合但是使光催化剂在紫外部分的吸收降低,即降低了材料的光催化活性。

关键词 无机非金属材料金红石二氧化钛铜掺杂光催化性能溶胶凝胶法    
Abstract

Cu-doped rutile TiO2 photocatalysts with different concentrations were prepared by sol-gel method at 650℃. The crystal structure, surface morphology, elemental composition and valence state, surface area and optical property of the obtained photocatalysts were characterized by XRD, SEM, TEM, XPS, BET, PL and DRS. The results show that pure TiO2 is a mixed crystal composed of a small amount of anatase and a large amount of rutile. Cu doping is conducive to the transformation of anatase to rutile, and Cu-doped TiO2 forms single rutile phase. Cu element exists in the form of +1 and +2 valence coexistence in the sample. Using rhodamine B as the target pollutant and xenon lamp as the UV-visible light source, the photocatalytic activity was investigated. The results show that Cu doping inhibits the photocatalytic activity. The results of optical property show that although Cu doping is beneficial to suppressing the recombination of photogenerated electrons and holes, it reduces the absorption of the photocatalyst in the ultraviolet religion, which leads to the decline of photocatalytic activity.

Key wordsinorganic non-metallic materials    rutile TiO2    Cu doping    photocatalytic activity    sol-gel method
收稿日期: 2021-08-13     
ZTFLH:  O614.41  
基金资助:四川省科技厅应用基础研究(2019YJ0664);成都大学大学生创新计划(S202111079008);成都大学大学生创新计划(S202111079118)
作者简介: 朱晓东,男,1984年生,副教授
图1  纯TiO2和Cu-TiO2的XRD谱
图2  纯TiO2和3%Cu-TiO2的SEM照片
图3  纯TiO2和3%Cu-TiO2的TEM照片
图4  3%Cu-TiO2的XPS谱
图5  纯TiO2和3%Cu-TiO2的N2吸附脱附曲线
图6  纯TiO2和Cu-TiO2的降解曲线和动力学曲线
图7  纯TiO2和Cu-TiO2的PL谱
图8  纯TiO2和Cu-TiO2的紫外可见吸收光谱
1 Chen Y, Xiang Z Y, Wang D S, et al. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels [J]. RSC Adv., 2020, 10: 23936
doi: 10.1039/D0RA04509H
2 Bashiri R, Mohamed N M, Kait C F, et al. Enhancing photoelectrochemical hydrogen production over Cu and Ni doped titania thin film: Effect of calcination duration [J]. J. Environ. Chem. Eng., 2017, 5(4): 3207
doi: 10.1016/j.jece.2017.06.027
3 Adyani S M, Ghorbani M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials [J]. J. Rare Earth., 2018, 36: 72
doi: 10.1016/j.jre.2017.06.012
4 Li X B, Xiong J, Huang J T, et al. Novel g-C3N4/h'ZnTiO3-a'TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity [J]. J. Alloy. Compd., 2019, 774: 768
doi: 10.1016/j.jallcom.2018.10.034
5 Zhang Y, Wang T, Zhou M, et al. Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity [J]. Ceram. Int., 2017, 44(3): 3118
6 Li S S, Liu Y, Wang Y H, et al. Preparation and photocatalytic activity of Co-doped TiO2 [J]. New Chem. Mater., 2016, 44(9): 159
6 李沙沙, 刘 勇, 王艳红 等. 钴掺杂改性TiO2的制备及其光催化性能研究 [J]. 化工新型材料, 2016, 44(9): 159
7 Li W. Treatment of trivalent chromium in electroplating wastewater by Fe (II)-doped TiO2 photocatalyst [J]. Electroplating & Finishing, 2021, 40(2): 124
7 李 伟. Fe(II)掺杂TiO2光催化剂处理电镀废水中的六价铬 [J]. 电镀与涂饰, 2021, 40(2): 124
8 Triantis T M, Fotiou T, Kaloudis T, et al. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2 [J]. J. Hazard. Mater., 2012, 211-212(2): 196
doi: 10.1016/j.jhazmat.2011.11.042
9 Carp O, Huisman C.L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Prog. Solid. State. Chem., 2004, 32: 33
doi: 10.1016/j.progsolidstchem.2004.08.001
10 Meng Q Y, Liu B C, Liu H J, et al. Effects of S and Ta codoping on photocatalytic activity of rutile TiO2 [J]. J. Sol-Gel. Sci. Techn., 2018, 86: 631
doi: 10.1007/s10971-018-4681-3
11 Zhao W J, Zhang J, Pan J Q, et al. One-step electrospinning route of SrTiO3-modified Rutile TiO2nanofibers and its photocatalytic properties [J]. Nanoscale Res. Lett., 2017, 12(1): 371
doi: 10.1186/s11671-017-2130-9
12 Zhu X D, Han S H, Zhu D Z, et al. Preparation and characterisation of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light [J]. Micro Nano Lett., 2019, 14(7): 757
doi: 10.1049/mnl.2018.5679
13 Bensouici F, Bououdina M, Dakhel A.A, et al. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films [J]. Appl. Surf. Sci., 2017, 395: 110
doi: 10.1016/j.apsusc.2016.07.034
14 Evgenidou E, Chatzisalata Z, Tsevis A, et al. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection [J]. J. Environ. Chem. Eng., 2021, 9: 105295
doi: 10.1016/j.jece.2021.105295
15 Luo Y J, Xu Y X, Liu X P, et al. Design of Cu-Ce co-doped TiO2 for improved photocatalysis [J]. J. Mater. Sci., 2017, 52(3): 1265
doi: 10.1007/s10853-016-0421-7
16 Turkten N, Cinar Z, Tomruk A, et al. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation [J]. Environ. Sci. Pollut. Res., 2019, 26(36): 36096
doi: 10.1007/s11356-019-04474-x
17 Zhu X D, Wang J, Ma Y, et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
17 朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
18 Liu H Y, Fan H M, Wu R, et al. Nitrogen-doped black TiO2 spheres with enhanced visible light photocatalytic performance [J]. SN Appl. Sci., 2019, 1: 487
doi: 10.1007/s42452-019-0502-8
19 Dao D V, Bremt M V D, Koeller Z, et al. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens [J]. Powder Technol., 2016, 288: 366
doi: 10.1016/j.powtec.2015.11.030
20 Sood S, Umar A, Mehta S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds [J]. J. Colloid Interface Sci., 2015, 450: 213
doi: 10.1016/j.jcis.2015.03.018
21 Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants [J]. Powder Technol., 2012, 219: 173
doi: 10.1016/j.powtec.2011.12.037
22 Krishnakumar V, Boobas S, Jayaprakash J, et al. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light [J]. J. Mater. Sci., 2016, 27: 7438
23 Gracia F, Holgado J. P, Caballero A, et al. Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts [J]. J. Phys. Chem. B, 2004, 108: 17466
doi: 10.1021/jp0484938
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.