|
|
Cu掺杂金红石型TiO2 的制备及其光催化性能 |
朱晓东1, 夏杨雯1, 喻强2, 杨代雄1, 何莉莉1, 冯威1() |
1.成都大学机械工程学院 成都 610106 2.四川新亚无损检测有限公司 成都 610213 |
|
Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property |
ZHU Xiaodong1, XIA Yangwen1, YU Qiang2, Yang Daixiong1, HE Lili1, FENG Wei1() |
1.School of Mechanical Engineering, Chengdu University, Chengdu 610106, China 2.Sichuan Xinya Non-Destructive Testing Co. Ltd, Chengdu 610213, China |
引用本文:
朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
Xiaodong ZHU,
Yangwen XIA,
Qiang YU,
Daixiong Yang,
Lili HE,
Wei FENG.
Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. Chinese Journal of Materials Research, 2022, 36(8): 635-640.
1 |
Chen Y, Xiang Z Y, Wang D S, et al. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels [J]. RSC Adv., 2020, 10: 23936
doi: 10.1039/D0RA04509H
|
2 |
Bashiri R, Mohamed N M, Kait C F, et al. Enhancing photoelectrochemical hydrogen production over Cu and Ni doped titania thin film: Effect of calcination duration [J]. J. Environ. Chem. Eng., 2017, 5(4): 3207
doi: 10.1016/j.jece.2017.06.027
|
3 |
Adyani S M, Ghorbani M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials [J]. J. Rare Earth., 2018, 36: 72
doi: 10.1016/j.jre.2017.06.012
|
4 |
Li X B, Xiong J, Huang J T, et al. Novel g-C3N4/h'ZnTiO3-a'TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity [J]. J. Alloy. Compd., 2019, 774: 768
doi: 10.1016/j.jallcom.2018.10.034
|
5 |
Zhang Y, Wang T, Zhou M, et al. Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity [J]. Ceram. Int., 2017, 44(3): 3118
|
6 |
Li S S, Liu Y, Wang Y H, et al. Preparation and photocatalytic activity of Co-doped TiO2 [J]. New Chem. Mater., 2016, 44(9): 159
|
6 |
李沙沙, 刘 勇, 王艳红 等. 钴掺杂改性TiO2的制备及其光催化性能研究 [J]. 化工新型材料, 2016, 44(9): 159
|
7 |
Li W. Treatment of trivalent chromium in electroplating wastewater by Fe (II)-doped TiO2 photocatalyst [J]. Electroplating & Finishing, 2021, 40(2): 124
|
7 |
李 伟. Fe(II)掺杂TiO2光催化剂处理电镀废水中的六价铬 [J]. 电镀与涂饰, 2021, 40(2): 124
|
8 |
Triantis T M, Fotiou T, Kaloudis T, et al. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2 [J]. J. Hazard. Mater., 2012, 211-212(2): 196
doi: 10.1016/j.jhazmat.2011.11.042
|
9 |
Carp O, Huisman C.L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Prog. Solid. State. Chem., 2004, 32: 33
doi: 10.1016/j.progsolidstchem.2004.08.001
|
10 |
Meng Q Y, Liu B C, Liu H J, et al. Effects of S and Ta codoping on photocatalytic activity of rutile TiO2 [J]. J. Sol-Gel. Sci. Techn., 2018, 86: 631
doi: 10.1007/s10971-018-4681-3
|
11 |
Zhao W J, Zhang J, Pan J Q, et al. One-step electrospinning route of SrTiO3-modified Rutile TiO2nanofibers and its photocatalytic properties [J]. Nanoscale Res. Lett., 2017, 12(1): 371
doi: 10.1186/s11671-017-2130-9
|
12 |
Zhu X D, Han S H, Zhu D Z, et al. Preparation and characterisation of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light [J]. Micro Nano Lett., 2019, 14(7): 757
doi: 10.1049/mnl.2018.5679
|
13 |
Bensouici F, Bououdina M, Dakhel A.A, et al. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films [J]. Appl. Surf. Sci., 2017, 395: 110
doi: 10.1016/j.apsusc.2016.07.034
|
14 |
Evgenidou E, Chatzisalata Z, Tsevis A, et al. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection [J]. J. Environ. Chem. Eng., 2021, 9: 105295
doi: 10.1016/j.jece.2021.105295
|
15 |
Luo Y J, Xu Y X, Liu X P, et al. Design of Cu-Ce co-doped TiO2 for improved photocatalysis [J]. J. Mater. Sci., 2017, 52(3): 1265
doi: 10.1007/s10853-016-0421-7
|
16 |
Turkten N, Cinar Z, Tomruk A, et al. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation [J]. Environ. Sci. Pollut. Res., 2019, 26(36): 36096
doi: 10.1007/s11356-019-04474-x
|
17 |
Zhu X D, Wang J, Ma Y, et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
|
17 |
朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
|
18 |
Liu H Y, Fan H M, Wu R, et al. Nitrogen-doped black TiO2 spheres with enhanced visible light photocatalytic performance [J]. SN Appl. Sci., 2019, 1: 487
doi: 10.1007/s42452-019-0502-8
|
19 |
Dao D V, Bremt M V D, Koeller Z, et al. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens [J]. Powder Technol., 2016, 288: 366
doi: 10.1016/j.powtec.2015.11.030
|
20 |
Sood S, Umar A, Mehta S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds [J]. J. Colloid Interface Sci., 2015, 450: 213
doi: 10.1016/j.jcis.2015.03.018
|
21 |
Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants [J]. Powder Technol., 2012, 219: 173
doi: 10.1016/j.powtec.2011.12.037
|
22 |
Krishnakumar V, Boobas S, Jayaprakash J, et al. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light [J]. J. Mater. Sci., 2016, 27: 7438
|
23 |
Gracia F, Holgado J. P, Caballero A, et al. Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts [J]. J. Phys. Chem. B, 2004, 108: 17466
doi: 10.1021/jp0484938
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|