Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 345-352    DOI: 10.11901/1005.3093.2019.543
  研究论文 本期目录 | 过刊浏览 |
氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究
梁新磊3, 刘茜1,2, 王刚3, 王震宇1, 韩恩厚1(), 王帅1, 易祖耀3, 李娜3
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 合肥 230026
3.华电郑州机械设计研究院有限公司 郑州 450046
Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating
LIANG Xinlei3, LIU Qian1,2, WANG Gang3, WANG Zhenyu1, HAN En-Hou1(), WANG Shuai1, YI Zuyao3, LI Na3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3.Huadian Zhengzhou Mechanical Design Institute Co. , Ltd, Zhengzhou 450046, China
引用本文:

梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
Xinlei LIANG, Qian LIU, Gang WANG, Zhenyu WANG, En-Hou HAN, Shuai WANG, Zuyao YI, Na LI. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. Chinese Journal of Materials Research, 2020, 34(5): 345-352.

全文: PDF(2269 KB)   HTML
摘要: 

用氧化石墨烯(GO)浓缩浆分散法制备GO改性环氧隔热涂层,在浓度(质量分数)为3.5% 的NaCl溶液(50℃)中进行腐蚀实验并测试其腐蚀前后的隔热性能。432 h的腐蚀电化学测试结果表明,用0.5%(质量分数) 的GO改性显著提高了涂层低频阻抗,涂层的耐蚀性优于无GO改性和1.0% GO改性的涂层;SEM分析结果表明,用0.5%和1.0% GO改性的隔热涂层腐蚀432 h后表面形貌完好,涂层/基体界面处没有出现裂纹和腐蚀产物,而未经GO改性的涂层出现了明显腐蚀破坏。腐蚀试验前,0.5%、1.0% GO改性的涂层与没有改性的涂层的隔热性能没有明显的区别;腐蚀432 h后涂层对250℃热源分别降温98℃、123℃、115℃,粘结强度分别降低了3.9、1.0、2.3 MPa。实验结果表明,用0.5% GO改性的涂层耐蚀和隔热性能最好。

关键词 材料失效与保护耐蚀与隔热氧化石墨烯改性环氧涂层    
Abstract

Graphene oxide (GO) modified epoxy thermal insulation coatings were prepared by adding GO concentrates, then corrosion immersion test in 3.5%NaCl (mass fraction) solution at 50oC and thermal insulation effect before and after corrosion tests were comparatively measured. Electrochemical analysis shows that the coating modified with 0.5% GO has higher low-frequency resistance than that of coatings with 0% and 1.0% GO. Good surface morphologies were retained for coatings with GO addition after immersion in 3.5% NaCl solution (50oC) for 432 h. Meanwhile, no obvious cracks and corrosion products were detected on the coating/substrate interface. The coating without GO addition emerges obvious corrosion. The thermal insulation effect to a 250oC heat source of the above three coatings before corrosion test presents slight differences. Whereas, after 432 h corrosion immersion test the coating with 0% GO, 0.5% GO and 1.0% GO presents quite different in thermal insulation effect with temperature drop as 98oC, 123oC and 115oC for the coated substrate and decrease of bonding strength to the substrate as 3.9 MPa, 1.0 MPa, 2.3 MPa respectively. These results verify that the epoxy coating modified with 0.5% GO has the best corrosion resistance and thermal insulation performance.

Key wordsmaterials failure and protection    anti-corrosion and thermal insulation    graphene oxide modification    epoxy coating
收稿日期: 2019-11-19     
ZTFLH:  TG174  
作者简介: 梁新磊,男,1976年生,正高级工程师|刘茜,女,1992年生,博士生
图1  测试涂层隔热性能的装置
图2  氧化石墨烯和氧化石墨烯浓缩浆的TEM形貌
图3  涂层在3.5% NaCl溶液(50℃)中浸泡24 h后的Nyquist图和Bode图
图4  涂层在3.5% NaCl溶液(50℃)中浸泡432 h后的Nyquist图和Bode图
图5  用于拟合阻抗结果的等效电路Rs(Qcoat(Rcoat(QdlRct)))
Time / hSample

Rs

/Ω·cm2

Qcoat

/sn·Ω-1·cm-2

αcoat

Ceffcoat

/F·cm-2

Rcoat

/Ω·cm2

Rct

/Ω·cm2

24120.334.26 × 10-90.88274.90 × 10-101.17 × 1055.56 × 105
218.651.81 × 10-100.92254.26 × 10-103.11 × 1053.68 × 106
318.932.13 × 10-90.91914.76 × 10-103.00 × 1052.84 × 106
432122.316.48 × 10-90.87126.31 × 10-104.22 × 1031.41 × 104
218.982.51 × 10-100.90754.50 × 10-101.15 × 1055.14 × 105
319.524.18 × 10-90.88995.55 × 10-107.47 × 1043.31 × 105
表1  不同涂层在3.5% NaCl溶液(50℃)中浸泡24 h和432 h后的EIS拟合结果
图6  涂层在3.5% NaCl溶液(50℃)中浸泡432 h后的光学照片
图7  涂层在3.5% NaCl溶液(50℃)中浸泡432 h后的SEM表面形貌
图8  涂层在3.5% NaCl溶液(50℃)中浸泡432 h后的横截面形貌
图9  涂层在3.5% NaCl溶液(50℃)中浸泡不同时间后的粘结强度
图10  涂层在3.5% NaCl溶液(50℃)浸泡前的温差-时间隔热曲线
图11  涂层在3.5% NaCl溶液(50℃)中浸泡432 h后的温差-时间隔热曲线
图12  涂层样板在30个冷热循环前后的光学照片
[1] Shinkareva E. V., Safonova A. M.. Conducting and heat-insulating paintwork materialsbased on nickel-plated glass spheres [J]. Glass Ceram+., 2006, 63(1): 32
[2] Ji Q, Ni Y R, Lu C H, et al. preparation and properties of hollow glass microspheres/PS insulation materials [J]. New Chem. Mater., 2012, 40(10): 32
[2] (季清, 倪亚茹, 陆春华等. 空心玻璃微珠/PS隔热材料的制备及其性能 [J]. 化工新型材料, 2012, 40(10): 32)
[3] Wang J W, Zhang D W. study on thermal insulating performance of sepiolote/HGMs epoxy composite coating in Mg alloy [J]. Coat. Technol. Abstr., 2017, 38(9): 12
[3] (王金伟, 张达威. 海泡石/空心微珠/环氧树脂复合涂层在镁合金表面的隔热性能研究 [J]. 涂料技术与文摘, 2017, 38(9): 12)
[4] Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
[5] Chang K C, Hsu M H, Lu H, et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel [J]. Carbon, 2014, 66: 144
[6] Singhbabu Y N, Sivakumar B, Singh J K, et al. Efficient anti-corrosive coating of cold-rolled steel in a seawater environment using an oil-based graphene oxide ink [J]. Nanoscale, 2015, 7: 8035
[7] Yu Z X, Di H H, Ma Y, et al. Fabrication of graphene oxide–alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings [J]. Appl. Surf. Sci., 2015, 351: 986
[8] Singh B P, Nayak S, Nanda K K, et al. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition [J]. Carbon, 2013, 61: 47
[9] Rajabi M, Rashed G R, Zaarei D, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel [J]. Corros. Eng. Sci. Technol. 2015, 50: 509
[10] Ramezanzadeh B, Haeri Z, Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chem. Eng. J., 2016, 303: 511
[11] Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
[12] Ramezanzadeh B, Ahmadi A, Mandavian M. Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets [J]. Corros. Sci., 2016, 109: 182
[13] Nguyen T D, Tran B A, Vu K O, et al. Corrosion protection of carbon steel using hydrotalcite/graphene oxide nanohybrid [J]. J. Coat. Technol. Res., 2018, 16 (2): 585
[14] Yan M C, Vetter C A, Gelling V J. Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys [J]. Corros. Sci., 2013, 70: 37
[15] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64(4): 497
[16] Tsai P Y, Chen T E, Lee Y L. Development and Characterization of Anticorrosion and Antifriction Properties for High Performance Polyurethane/Graphene Composite Coatings [J]. Coatings, 2018, 8: 250
[17] Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
[18] Morsch S, Lyon S, Smith S D, et al. Mapping water uptake in an epoxy-phenolic coating [J]. Prog. Org. Coat., 2015, 86: 173
[19] Cai K, Zuo S, Luo S, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. Rsc Advances2016, 6 (98): 95965
doi: 10.1039/C6RA19618G
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
[15] 尹奇,刘淼然,刘雨薇,潘晨,王振尧. MgCl2对锌在干湿交替环境中腐蚀行为的影响[J]. 材料研究学报, 2019, 33(9): 705-712.