Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 353-360    DOI: 10.11901/1005.3093.2019.466
  研究论文 本期目录 | 过刊浏览 |
金属有机框架材料MIL-53(Al)-F127对双酚A的吸附性能
孙玥, 李大伟, 魏取福()
江南大学 生态纺织教育部重点实验室 无锡 214122
Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A
SUN Yue, LI Dawei, WEI Qufu()
Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
引用本文:

孙玥, 李大伟, 魏取福. 金属有机框架材料MIL-53(Al)-F127对双酚A的吸附性能[J]. 材料研究学报, 2020, 34(5): 353-360.
Yue SUN, Dawei LI, Qufu WEI. Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A[J]. Chinese Journal of Materials Research, 2020, 34(5): 353-360.

全文: PDF(1928 KB)   HTML
摘要: 

采用一步溶剂热法制备具有介孔结构金属有机框架材料MIL-53(Al)-F127,用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶红外变换光谱仪(FTIR)、全自动比表面积及孔隙度分析仪(BET)等手段表征其形貌和结构,探究其对双酚A(BPA)的吸附性能并与微孔结构的MIL-53(Al)对比,研究了吸附剂的含量、pH以及温度对其吸附性能的影响。结果表明,介孔结构金属有机框架材料MIL-53(Al)-F127对双酚A具有良好的吸附性能;在pH值为6、温度为30℃条件下MIL-53(Al)-F127在20 min左右达到最大平衡吸附量为27.2 mg/g,去除率达到92%。其吸附动力学模型拟合结果,符合准二级动力学曲线。

关键词 复合材料金属有机框架吸附MIL-53(Al)MIL-53(Al)-F127双酚A(BPA)    
Abstract

Mesostructured metal-organic framework material MIL-53(Al)-F127 was synthesized by one-step solvothermal method, and the morphology and structure of MIL-53(Al)-F127 were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD), Fourier-transform infrared spectrometer (FTIR) and N2 adsorption-desorption (BET). The adsorption performance of MIL-53(Al)-F127 and the microporous structure MIL-53(Al) on bisphenol A in aqueous solution and the influence of the adsorbent concentration, pH, temperature were comparatively investigated. Results show that MIL-53(Al)-F127 exhibited good adsorption properties for bisphenol A in aqueous solution. The optimum pH level for the removal of BPA using MIL-53(Al)-F127 were 6. The optimum temperature for the sorption behavior of BPA on the sorbent was 30℃. The equilibrium sorption amounts of BPA on MIL-53-(Al)-F127 reached approximately 27.2 mg/g, the removal efficiency was 92% after approximately 20 min. The sorption kinetics of BPA were found to follow the quasi second order dynamic model.

Key wordscomposite    metal-organic framework    adsorption    MIL-53(Al)    MIL-53(Al)-F127    bisphenol A(BPA)
收稿日期: 2019-10-09     
ZTFLH:  TQ424.3  
基金资助:江苏省自然科学基金(BK20180628);中央高校基本科研业务费专项资金(JUSRP51907A);江苏高校优势学科建设工程项目
作者简介: 孙玥,女,1996年生,硕士生
图1  吸附剂MIL-53(Al)和MIL-53(Al)-F127的 SEM和TEM照片
图2  MIL-53(Al)和MIL-53(Al)-F127的傅里叶红外变换光谱
图3  吸附剂MIL-53(Al)和MIL-53(Al)-F127的X-射线衍射谱图
图4  吸附剂MIL-53(Al)和MIL-53(Al)-F127的N2吸附-脱附曲线和孔径分布曲线
图5  吸附剂MIL-53(Al)和MIL-53(Al)-F127的吸附动力学表征和准一级以及准二级动力学模型拟合
图6  吸附剂含量对BPA去除率的影响
图7  溶液的pH值对BPA去除率的影响
图8  温度对BPA去除率的影响
[1] Tsai W T. Human health risk on environmental exposure to bisphenol-A: A review [J]. J. Environ. Sci. Health, 2006, 24C: 225
[2] Kim, Y H, Lee B, Choo K H, et al. Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas [J]. Micropor. Mesopor. Mat., 2011, 138: 184
[3] Dong Y, Wu D Y, Chen X C, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite [J]. J. Colloid Interface Sci., 2010, 348: 585
[4] Namasivayam C, Sumithra S. Adsorptive removal of phenols by Fe(III)/Cr(III) hydroxide, an industrial solid waste [J]. Clean Technol. Environ. Policy., 2007, 9: 215
[5] Ghiaci M, Kalbasi R J, Abbaspour A. Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters [J]. Colloid Surf., 2007, 297A: 105
[6] Fang Z Q, Huang H J. Adsorption of Di-N-butyl phthalate onto nutshell-based activated carbon. Equilibrium, kinetics and thermodynamics [J]. Adsorpt. Sci. Technol., 2009, 27:685
[7] Hou S L, Lu H G, Gu Y F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31: 495
[7] (侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31: 495)
[8] Serra-Crespo P, Ramos-Fernandez E V, Gascon J, et al. Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties [J]. Chem. Mater., 2011, 23: 2565
[9] Wu Y N, Li F T, Xu Y X, et al. Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate [J]. Chem. Commun., 2011, 47: 10094
doi: 10.1039/c1cc12563j
[10] Yang X P, Guo X X, Zhang C H, et al. Large scale halogen-free synthesis of metal-organic framework material Fe-MIL-100 [J]. Chin. J. Mater. Res., 2017, 31: 569
doi: 10.11901/1005.3093.2016.563
[10] (杨向平, 郭晓雪, 张成华等. 大规模无卤素合成金属有机骨架材料Fe-MIL-100 [J]. 材料研究学报, 2017, 31: 569)
doi: 10.11901/1005.3093.2016.563
[11] El-Sharkawy R G, El-Din A S B, Etaiw E D H. Kinetics and mechanism of the heterogeneous catalyzed oxidative decolorization of Acid-Blue 92 using bimetallic metal-organic frameworks [J]. Spectroc. Acta, 2011, 79A: 1969
[12] Mulder F M, Dingemans T J, Schimmel H G, et al. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations [J]. Chem. Phys., 2008, 351: 72
[13] Chen B L, Wang L B, Zapata F, et al. A luminescent microporous metal-organic framework for the recognition and sensing of anions [J]. J. Am. Chem. Soc., 2008, 130: 6718
[14] Jia Q X, Wang Y Q, Yue Q, et al. Isomorphous CoII and MnII materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours [J]. Chem. Commun., 2008, (40): 4894
[15] Wang F, Li F L, Xu M M, et al. Facile Synthesis of a Ag(I)-doped coordination polymer with enhanced catalytic performane in the photodegradation of azo dyes in Water [J]. J. Mater. Chem., 2015, 3A: 5908
[16] Liu D, Lang J P, Abrahams B F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation [J]. J. Am. Chem. Soc., 2011, 133: 1042
[17] Zhang Y M, Yang L. Application of metal-organic framework for water pollution treatment [J]. Agric. Technol., 2014, 34(4): 13
[17] (张艳梅, 杨力. 金属有机骨架材料在污水处理中的应用 [J]. 农业与技术, 2014, 34(4): 13)
[18] Ke F, Qiu L G, Yuan Y P, et al. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water [J]. J. Hazard. Mater., 2011, 196: 36
[19] He J, Yee K K, Xu Z T, et al. Thioether side chains improve the stability, fluorescence, and metal uptake of a metal-organic framework [J]. Chem. Mater., 2011, 23: 2940
[20] Liu B J, Yang F, Zou Y X. Adsorption of organic acids from aqueous solution onto metal-organic frameworks [J]. Environ. Prot. Chem. Ind., 2016, 36: 268
[20] (刘宝鉴, 杨帆, 邹远兴. 金属有机骨架材料对水中有机酸的吸附性能 [J]. 化工环保, 2016, 36: 268)
[21] Yang C X, Liu S S, Wang H F, et al. High-performance liquid chromatographic separation of position isomers using metal- organic framework MIL-53(Al) as the stationary phase [J]. Analyst, 2012, 137: 133
[22] Zhou M M, Wu Y N, Qiao J L, et al. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al) [J]. J. Colloid Interface Sci., 2013, 405: 157
[23] Long P, Tan H Y, Liu C, et al. Research of metal organic frameworks MIL-53(Al) for adsorption Ni2+ in waste water [J]. J. Wuhan Univ. Technol., 2016, 38: 79
[23] (龙萍, 谭海燕, 刘畅等. 金属有机骨架材料MIL-53(Al)对污水中Ni2+的吸附研究 [J]. 武汉理工大学学报, 2016, 38: 79)
[24] FeRey G, Latroche M, Serre C, et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al3+, Cr3+), MIL-53 [J]. Chem. Commun., 2003, (24): 2976
[25] Meilikhov M, Yusenko K, Fischer R A. The adsorbate structure of ferrocene inside [Al (OH)(bdc)]x (MIL-53): a powder X-ray diffraction study [J]. Dalton Trans., 2009, (4: 600
[26] Himsl D, Wallacher D, Hartmann M. Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping [J]. Angew. Chem. Int. Edit., 2009, 48: 4639
[27] Do X D, Hoang V T, Kaliaguine S. MIL-53(Al) mesostructured metal-organic frameworks [J]. Micropor. Mesopor. Mat., 2011, 141: 135
[28] Roy X, Thompson L K, Coombs N, et al. Mesostructured prussian blue analogues [J]. Angew. Chem. Int. Edit., 2008, 47: 511
[29] Pera-Titus M, Farrusseng D. Guest-Induced gate opening and breathing phenomena in soft porous crystals: building thermodynamically consistent isotherms [J]. J. Phys. Chem., 2012, 116C: 1638
[30] Patil D V, Rallapalli P B S, Dangi G P, et al. MIL-53(Al): An efficient adsorbent for the removal of nitrobenzene from aqueous solutions [J]. Ind. Eng. Chem. Res., 2011, 50: 10516
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.