|
|
Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为 |
王冠一, 车欣( ), 张浩宇, 陈立佳 |
沈阳工业大学材料科学与工程学院 沈阳 110870 |
|
Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet |
WANG Guanyi, CHE Xin( ), ZHANG Haoyu, CHEN Lijia |
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
引用本文:
王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
Guanyi WANG,
Xin CHE,
Haoyu ZHANG,
Lijia CHEN.
Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. Chinese Journal of Materials Research, 2020, 34(9): 697-704.
[1] |
Li C B, Deng Y L, Tang J G, et al. Effect of quenching rate on properties of automotive high strength Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 103
doi: 10.11901/1005.3093.2018.391
|
[1] |
(李承波, 邓运来, 唐建国等. 淬火速率对汽车用高强铝合金性能的影响 [J]. 材料研究学报, 2019, 33: 103)
doi: 10.11901/1005.3093.2018.391
|
[2] |
Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 15
doi: 10.11901/1005.3093.2017.774
|
[2] |
(王宜豹, 黄楠, 刘鲁生等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33: 15)
doi: 10.11901/1005.3093.2017.774
|
[3] |
Castella C, Peter I, Lombardo S, et al. Self-hardening aluminum alloys and their potential applications in the automotive industry [J]. Metall. Ital., 2018, 5: 19
|
[4] |
An W, Kim D, Kim B H, et al. Effects of exposure temperature on tensile and charpy impact properties of the 7xxx aluminum alloy for aerospace applications [J]. Korean J. Met. Mater., 2019, 57: 214
|
[5] |
Xu X J, Jia W J, Huang P, et al. Anisotropy of Al-Zn-Mg-Cu aluminum alloy under different aging conditions [J]. Heat Treat. Met., 2018, 43(4): 57
|
[5] |
(许晓静, 贾伟杰, 黄鹏等. 不同时效工艺处理Al-Zn-Mg-Cu铝合金的各向异性 [J]. 金属热处理, 2018, 43(4): 57)
|
[6] |
Orozco-Caballero A, Álvarez-Leal M, Verdera D, et al. Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2017, 125: 116
|
[7] |
Andreiko I M, Holovatyuk Y V, Ostash O P, et al. Anisotropy of the cyclic crack resistance of aluminum alloys after long-term operation [J]. Mater. Sci., 2016, 52: 83
|
[8] |
Jiao H B, Chen S D, Chen S Y, et al. Effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Rev., 2018, 32: 937
|
[8] |
(焦慧彬, 陈善达, 陈送义等. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响 [J]. 材料导报, 2018, 32(3): 937)
|
[9] |
Chen Y X, Zhang J G, Wang H, et al. EBSD investigation on the anisotropy of 2124 aluminum alloy [J]. Heat Treat. Met., 2011, 36(5): 79
|
[9] |
(陈艳霞, 张建国, 王泓等. 2124铝合金各向异性的EBSD研究 [J]. 金属热处理, 2011, 36(5): 79)
|
[10] |
Fu Y Z, Jiang Z, Tabie V M, et al. Anisotropy of microstructure and properties of Al-10.22 Zn-2.87 Mg-1.2 Cu-0.213 Zr alloy [J]. Mater. Res. Expr., 2019, 6(10): 106559
|
[11] |
Chen J, Duan Y L, Peng X Y, et al. Fatigue performance of 7475-T7351 aluminum alloy plate [J]. Chin. J. Nonferrous Met., 2015, 25: 890
|
[11] |
(陈军, 段雨露, 彭小燕等. 7475-T7351铝合金厚板的疲劳性能 [J]. 中国有色金属学报, 2015, 25: 890)
|
[12] |
Jian H G, Yin Z M, Jiang F, et al. EBSD analysis of fatigue crack growth of 2124 aluminum alloy for aviation [J]. Rare Met. Mater. Eng., 2014, 43: 1332
|
[13] |
Zhang X Y, Leng L, Wang Z J. Low cycle fatigue behavior of Al-Zn-Mg-Cu alloy containing Zr and Sc [J]. Mater. Rev., 2017, 31(20): 63
|
[13] |
(张笑宇, 冷利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为 [J]. 材料导报, 2017, 31(20): 63)
|
[14] |
Chen Y Z, Hao H, Wang L F, et al. Mean stress relaxation during low-cycle fatigue of aluminum alloy 7050-T7451 [J]. J. Mater. Sci. Eng., 2013, 31: 427
|
[14] |
(陈胤桢, 郝红, 王利发等. 7050-T7451铝合金低周疲劳平均应力松弛规律 [J]. 材料科学与工程学报, 2013, 31: 427)
|
[15] |
Zhu Q Y, Chen L J, Zhu G Q, et al. Effect of Sc addition on low-cycle fatigue properties of extruded Al-Zn-Mg-Cu-Zr alloy [J]. Mater. Sci. Technol., 2019, 36: 118
|
[16] |
Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
|
[17] |
Cong F G, Zhao G, Tian N, et al. Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27: 144
|
[17] |
(丛福官, 赵刚, 田妮等. 7150-T7751铝合金厚板性能的不均匀性 [J]. 材料研究学报, 2013, 27: 144)
|
[18] |
Ma Z F, Zhao W Y, Lu Z. Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy [J]. J. Aeronaut. Mater., 2015, 35(3): 1
|
[18] |
(马志锋, 赵唯一, 陆政. 织构及组织结构对超高强铝合金平面力学性能的影响 [J]. 航空材料学报, 2015, 35(3): 1)
|
[19] |
Guo H B, Yuan G C, Lin D H, et al. Analysis of mechanical anisotropy in casting-rolling Al-Mn alloy sheet [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 1315
|
[19] |
(郭海斌, 袁鸽成, 林典海等. 铸轧Al-Mn合金板材的各向异性分析 [J]. 特种铸造及有色合金, 2015, 35: 1315)
|
[20] |
Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Mat. Sci. Eng. A, 2018, 736: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|