Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 697-704    DOI: 10.11901/1005.3093.2020.020
  研究论文 本期目录 | 过刊浏览 |
Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为
王冠一, 车欣(), 张浩宇, 陈立佳
沈阳工业大学材料科学与工程学院 沈阳 110870
Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet
WANG Guanyi, CHE Xin(), ZHANG Haoyu, CHEN Lijia
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
Guanyi WANG, Xin CHE, Haoyu ZHANG, Lijia CHEN. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. Chinese Journal of Materials Research, 2020, 34(9): 697-704.

全文: PDF(8429 KB)   HTML
摘要: 

进行Al-5.4Zn-2.6Mg-1.4Cu合金板材的室温低周疲劳实验,对比研究了轴向平行于轧制方向(RD方向)和垂直于轧制方向(TD方向)试样的低周疲劳行为。结果表明:对于0.4%~0.8%的外加总应变幅,RD和TD方向合金试样的循环应力响应行为均呈现出循环稳定;对于相同的外加总应变幅,TD方向合金的循环应力幅值高于RD方向,而RD方向合金的疲劳寿命高于TD方向。对于RD和TD方向,Al-5.4Zn-2.6Mg-1.4Cu合金的塑性应变幅、弹性应变幅与载荷反向周次均呈线性关系。在低周疲劳加载条件下,裂纹在疲劳试样的自由表面以穿晶方式萌生和扩展。

关键词 材料失效与保护低周疲劳Al-5.4Zn-2.6Mg-1.4Cu合金轧制板材疲劳裂纹萌生与扩展    
Abstract

Low-cycle fatigue behavior for two type of specimens, sampling along rolling direction (RD) and transvers direction (TD) respectively of the rolled sheet of Al-5.4Zn-2.6Mg-1.4Cu alloy was comparatively assessed at room temperature. The results show that for all imposed total strain amplitudes the alloy along both RD and TD directions exhibits the stable cyclic stress response behavior. The cyclic stress amplitude of the alloy along TD direction is higher than that along RD direction for the same total strain amplitude, while the fatigue life of the alloy along RD direction is significantly longer than that along TD direction. For the Al-5.4Zn-2.6Mg-1.4Cu alloy sheet, the plastic strain amplitude and elastic strain amplitude are linearly related to the number of reversals to failure. In addition, under the loading condition of low-cycle fatigue the fatigue cracks initiate transgranularly at the free surface of fatigue samples and propagate transgranularly.

Key wordsmaterials failure and protection    low-cycle fatigue    Al-5.4Zn-2.6Mg-1.4Cu alloy    rolled sheet    fatigue crack initiation and propagation
收稿日期: 2020-01-15     
ZTFLH:  TG146.2+1  
基金资助:东北大学轧制技术及连轧自动化国家重点实验室开放课题基金(2018RALKFKT010)
作者简介: 王冠一,男,1994年生,硕士生
图1  沿RD方向和TD方向取样方式示意图
图2  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的应力-应变曲线
图3  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的循环应力响应对比曲线
图4  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的循环应力-应变曲线
Sampling directions

K’

/MPa

n’

ε’f

/%

c

σ’f

/MPa

b
RD732.30.072161.7-1.631267.0-0.14
TD733.00.06623.7-1.521104.3-0.13
表1  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的应变疲劳参数
图5  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的疲劳寿命曲线
图6  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的应变幅-载荷反向周次关系曲线
图7  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的疲劳裂纹源区与裂纹扩展区形貌
图8  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的疲劳变形区TEM分析结果
图9  RD和TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的EBSD照片、极图(PF)与反极图(IPF)
Sampling directionΔεt /2=0.4%Δεt /2=0.5%Δεt /2=0.6%Δεt /2=0.7%Δεt /2=0.8%
RD282.5376.8417.5435.6449.8
TD305.6393.0435.4454.1467.5
表2  RD与TD方向Al-5.4Zn-2.6Mg-1.4Cu合金的循环应力幅值
[1] Li C B, Deng Y L, Tang J G, et al. Effect of quenching rate on properties of automotive high strength Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 103
doi: 10.11901/1005.3093.2018.391
[1] (李承波, 邓运来, 唐建国等. 淬火速率对汽车用高强铝合金性能的影响 [J]. 材料研究学报, 2019, 33: 103)
doi: 10.11901/1005.3093.2018.391
[2] Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 15
doi: 10.11901/1005.3093.2017.774
[2] (王宜豹, 黄楠, 刘鲁生等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33: 15)
doi: 10.11901/1005.3093.2017.774
[3] Castella C, Peter I, Lombardo S, et al. Self-hardening aluminum alloys and their potential applications in the automotive industry [J]. Metall. Ital., 2018, 5: 19
[4] An W, Kim D, Kim B H, et al. Effects of exposure temperature on tensile and charpy impact properties of the 7xxx aluminum alloy for aerospace applications [J]. Korean J. Met. Mater., 2019, 57: 214
[5] Xu X J, Jia W J, Huang P, et al. Anisotropy of Al-Zn-Mg-Cu aluminum alloy under different aging conditions [J]. Heat Treat. Met., 2018, 43(4): 57
[5] (许晓静, 贾伟杰, 黄鹏等. 不同时效工艺处理Al-Zn-Mg-Cu铝合金的各向异性 [J]. 金属热处理, 2018, 43(4): 57)
[6] Orozco-Caballero A, Álvarez-Leal M, Verdera D, et al. Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2017, 125: 116
[7] Andreiko I M, Holovatyuk Y V, Ostash O P, et al. Anisotropy of the cyclic crack resistance of aluminum alloys after long-term operation [J]. Mater. Sci., 2016, 52: 83
[8] Jiao H B, Chen S D, Chen S Y, et al. Effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Rev., 2018, 32: 937
[8] (焦慧彬, 陈善达, 陈送义等. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响 [J]. 材料导报, 2018, 32(3): 937)
[9] Chen Y X, Zhang J G, Wang H, et al. EBSD investigation on the anisotropy of 2124 aluminum alloy [J]. Heat Treat. Met., 2011, 36(5): 79
[9] (陈艳霞, 张建国, 王泓等. 2124铝合金各向异性的EBSD研究 [J]. 金属热处理, 2011, 36(5): 79)
[10] Fu Y Z, Jiang Z, Tabie V M, et al. Anisotropy of microstructure and properties of Al-10.22 Zn-2.87 Mg-1.2 Cu-0.213 Zr alloy [J]. Mater. Res. Expr., 2019, 6(10): 106559
[11] Chen J, Duan Y L, Peng X Y, et al. Fatigue performance of 7475-T7351 aluminum alloy plate [J]. Chin. J. Nonferrous Met., 2015, 25: 890
[11] (陈军, 段雨露, 彭小燕等. 7475-T7351铝合金厚板的疲劳性能 [J]. 中国有色金属学报, 2015, 25: 890)
[12] Jian H G, Yin Z M, Jiang F, et al. EBSD analysis of fatigue crack growth of 2124 aluminum alloy for aviation [J]. Rare Met. Mater. Eng., 2014, 43: 1332
[13] Zhang X Y, Leng L, Wang Z J. Low cycle fatigue behavior of Al-Zn-Mg-Cu alloy containing Zr and Sc [J]. Mater. Rev., 2017, 31(20): 63
[13] (张笑宇, 冷利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为 [J]. 材料导报, 2017, 31(20): 63)
[14] Chen Y Z, Hao H, Wang L F, et al. Mean stress relaxation during low-cycle fatigue of aluminum alloy 7050-T7451 [J]. J. Mater. Sci. Eng., 2013, 31: 427
[14] (陈胤桢, 郝红, 王利发等. 7050-T7451铝合金低周疲劳平均应力松弛规律 [J]. 材料科学与工程学报, 2013, 31: 427)
[15] Zhu Q Y, Chen L J, Zhu G Q, et al. Effect of Sc addition on low-cycle fatigue properties of extruded Al-Zn-Mg-Cu-Zr alloy [J]. Mater. Sci. Technol., 2019, 36: 118
[16] Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
[17] Cong F G, Zhao G, Tian N, et al. Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27: 144
[17] (丛福官, 赵刚, 田妮等. 7150-T7751铝合金厚板性能的不均匀性 [J]. 材料研究学报, 2013, 27: 144)
[18] Ma Z F, Zhao W Y, Lu Z. Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy [J]. J. Aeronaut. Mater., 2015, 35(3): 1
[18] (马志锋, 赵唯一, 陆政. 织构及组织结构对超高强铝合金平面力学性能的影响 [J]. 航空材料学报, 2015, 35(3): 1)
[19] Guo H B, Yuan G C, Lin D H, et al. Analysis of mechanical anisotropy in casting-rolling Al-Mn alloy sheet [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 1315
[19] (郭海斌, 袁鸽成, 林典海等. 铸轧Al-Mn合金板材的各向异性分析 [J]. 特种铸造及有色合金, 2015, 35: 1315)
[20] Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Mat. Sci. Eng. A, 2018, 736: 1
[1] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 崔璐, 康文泉, 邹方, 魏文澜, 李臻, 王澎. 汽轮机转子10%Cr钢的高温低周疲劳特性[J]. 材料研究学报, 2021, 35(5): 371-380.
[9] 谌理飞, 罗云蓉, 张应迁, 李辉, 李秀兰, 廖文丽. 盐雾预腐蚀对HRB400E抗震钢筋超低周疲劳性能的影响[J]. 材料研究学报, 2021, 35(2): 101-109.
[10] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[11] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.