Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 526-534    DOI: 10.11901/1005.3093.2020.550
  研究论文 本期目录 | 过刊浏览 |
用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为
唐荣茂, 刘光明(), 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹
南昌航空大学材料科学与工程学院 南昌 330063
Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise
TANG Rongmao, LIU Guangming(), LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu
School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
Rongmao TANG, Guangming LIU, Yongqiang LIU, Chao SHI, Bangyan ZHANG, Jihong TIAN, Hongyu GAN. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. Chinese Journal of Materials Research, 2021, 35(7): 526-534.

全文: PDF(6343 KB)   HTML
摘要: 

采用电化学噪声技术(EN)和电化学阻抗谱(EIS)研究了Q235钢在0.5 mol/L NaCl的饱和Ca(OH)2溶液(SCP)中的腐蚀过程,并对噪声数据进行时域分析与频域分析,对阻抗谱数据进行等效电路分析。采用SEM结合EDS和XRD研究了Q235钢的表面形貌和结构组成。结果表明,Q235钢在SCP溶液中的腐蚀过程可分为钝化膜的形成与破裂阶段(Ⅰ)、亚稳态点蚀阶段(Ⅱ)和Ca2+沉积和腐蚀产物形成阶段(Ⅲ)。在(Ⅰ)阶段,电流噪声的波动幅值较小,电流噪声标准偏差SI、白噪声水平WI较小、噪声电阻Rn较大;在(Ⅱ)阶段,电流噪声波动幅值较大,SIWI呈现阶跃式增长,Rn显著降低;在(Ⅲ)阶段,电流噪声波动幅值增大到200 nA,SIWIRn平稳波动。Q235钢在SCP溶液中腐蚀10 d后在其表面出现Fe2O3和弥散分布的CaCO3晶体,此时阻抗谱中出现类Warburg阻抗,腐蚀反应受电荷转移和O2扩散的联合控制。

关键词 材料失效与保护腐蚀行为研究电化学噪声模拟混凝土孔隙液Q235钢    
Abstract

The corrosion process of Q235 steel in 0.5 mol/L NaCl saturated Ca(OH)2 solution (SCP) was investigated by electrochemical noise technology (EN) and electrochemical impedance spectroscopy (EIS), and the noise data were analyzed in time domain analysis and frequency domain analysis, and the impedance spectrum data were analyzed by way of equivalent circuit. The surface morphology and structure of the tested Q235 steel were characterized by SEM combined with EDS and XRD. The results show that the corrosion process of Q235 steel in SCP solution can be differentiated into three stages: (Ⅰ) the formation and cracking stage of passivation film, (Ⅱ) the metastable pitting corrosion stage and (Ⅲ) the Ca2+ deposition and corrosion product formation stage. In the stage (I), the amplitude of current noise fluctuation, the current noise standard deviation SI and the white noise level WI are relatively small, but the noise resistance Rn is relatively large; In the stage (Ⅱ), the amplitude of current noise fluctuation is large, SI and WI show a step-wise increase, and Rn decreases significantly; In the stage (Ⅲ), the amplitude of current noise fluctuation increases to 200nA, and SI, WI, Rn fluctuate relatively smoothly. When Q235 steel is corroded in SCP solution for 10 days, Fe2O3 with dispersed CaCO3 crystallites can be observed on the surface of Q235 steel. At this time Warburg impedance appears, while the corrosion reaction is jointly controlled by the charge transfer and O2 diffusion process.

Key wordsmaterial failure and protection    Corrosion behavior research    Electrochemical noise    Simulated concrete pore liquid    Q235 steel
收稿日期: 2020-12-22     
ZTFLH:  TG172.6+3  
基金资助:国家自然科学基金(51961028)
作者简介: 唐荣茂,男,1995年生,硕士生
图1  Q235钢在SCP溶液中腐蚀不同时间的去直流漂移时域谱图
图2  Q235钢在SCP溶液中腐蚀不同时间的时域统计图
图3  Q235钢在SCP溶液中腐蚀不同时间的PSD图
图4  Q235钢在SCP溶液中腐蚀不同时间后WI值的变化
图5  Q235钢在SCP溶液中腐蚀不同时间后的电化学阻抗谱
图6  Q235钢在SCP溶液中腐蚀不同时间的等效电路
Time/dRs/Ω·cm2Rf/Ω·cm2Qf-1·cm-2·s-1nfRct/Ω·cm2Qdl-1·cm-2·s-1ndlW/Ω·cm2·s-1/2
1 d3.011.82×1041.05×10-50.851.08×1044.01×10-50.66-
3 d2.133.81×1044.21×10-50.932.35×1049.21×10-50.60-
5 d2.982.16×1044.72×10-50.902.68×1041.43×10-40.58-
7 d3.092.15×1045.74×10-50.881.56×1042.19×10-40.57-
10 d2.884.32×1029.07×10-40.781.66×1043.15×10-40.774.53×10-4
表1  Q235钢在SCP溶液中腐蚀不同时间的EIS拟合参数
图7  Q235钢在SCP溶液中腐蚀10 d后的XRD谱
图8  Q235钢在SCP溶液中腐蚀10 d后的SEM形貌
ElementSpectrum1Spectrum2
Mass fraction/%Atomic fraction/%Mass fraction/%Atomic fraction/%
C K13.9321.527.1322.86
O K55.4364.287.3517.68
Ca K26.1912.121.361.30
Fe K2.730.9183.3757.30
Mg K1.110.85--
Cl K0.610.320.790.86
Total100100100100
表2  Q235钢在SCP溶液中腐蚀10 d后表面EDS测试结果
图9  Q235钢在SCP溶液中腐蚀过程的模型
1 Hu R G. Electrochemical study on corrosion process of steel rebar/concrete system [D]. Xiamen: Xiamen University, 2004
1 胡融刚. 钢筋/混凝土体系腐蚀过程的电化学研究 [D]. 厦门: 厦门大学, 2004
2 Yi B, Lin D Y, Chen Y X, et al. Effect of Cl- and SO42- on corrosion behavior of reinforcing steel in simulated concrete pore solutions [J]. Corros. Sci. Prot. Technol., 2016, 28(002): 97
2 易博, 林德源, 陈云翔等. Cl-和SO42-对模拟混凝土孔隙液中钢筋腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2016, 28(002): 97
3 Li K Q, Yang L J, Xu Y Z, et al. Influence of SO42- on the corrosion behavior of Q235B steel bar in simulated pore solution [J]. Acta Metall. Sin., 2019, 055(004): 457
3 李恺强, 杨璐嘉, 徐云泽等. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响 [J]. 金属学报, 2019, 055(004): 457
4 Song J. Corrosion behavior of 304 stainless steel and Q235 carbon steel by electrochemical noise technique [D]. Tianjin: Tianjin University, 2012
4 宋杰. 304不锈钢和Q235碳钢腐蚀行为的电化学噪声检测研究 [D]. 天津: 天津大学, 2012
5 Zhao B, Li J H, Hu R G, et al. Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements [J]. Electrochim. Acta., 2007, 52(12): 3976
6 Naghizade R., Shahidi Zandi M., Hosseini S. M. A.. Electrochemical noise analysis of corrosion behaviour of asymmetric electrodes made of mild steel in NaHCO3 solutions at different NaCl concentrations [J]. Meas., 2020, 43(155): 107501
7 Li Z, Lv J, Niu Z M, et al. Electrochemical noise of corrosion of X80 pipeline steel in Xinzhou soil environment [J]. Corros. Prot.,2017, 38(08): 608
7 李治, 吕建, 牛智民等. X80管线钢在新洲土壤中腐蚀的电化学噪声 [J]. 腐蚀与防护, 2017, 38(08): 608
8 Cui J, Yu D Y, Long Z W, et al. Application of electrochemical noise (EN) technology to evaluate the passivation performances of adsorption and film-forming type corrosion inhibitors [J]. J. Electroanal. Chem., 2019, 48(8): 855
9 Li J, Zhao L, Li B W, et al. Electrochemical noise characteristics of pitting corrosion of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(03): 235
9 李季, 赵林, 李博文等. 304不锈钢点蚀的电化学噪声特征 [J].中国腐蚀与防护学报, 2012, 32(03): 235
10 Dong Z H, Guo X P, Zheng J S, et al. Characteristics of electrochemical noise in local corrosion of 16Mn steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22(05): 35
10 董泽华, 郭兴蓬, 郑家燊等. 16Mn钢局部腐蚀中的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2002, 22(05): 35
11 Hu R G, Ye C Q, Dong S G, et al. Electrochemical noise measurement and wavelet analysis of steel bars in simulated concrete hole solution [J]. Electrochem., 2010, 16(02): 137
11 胡融刚, 叶陈清, 董士刚等. 模拟混凝土孔溶液中钢筋电化学噪音测量及小波分析 [J]. 电化学, 2010, 16(02): 137
12 Deng J H, Wang G, Hu J Z, et al. Simulation of pitting corrosion behavior of 304 stainless steel in marine atmosphere based on electrochemical noise research [J]. Electrochem., 2020, 26(02): 298
12 邓俊豪, 王贵, 胡杰珍等. 基于电化学噪声研究模拟海洋大气环境下304不锈钢的点蚀行为 [J]. 电化学, 2020, 26(02): 298
13 Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms [J]. Corros. Eng. Sci. Technol., 2016, 51(7): 527
14 An P L, Liang P, Ren J M, et al. Characteristics on electrochemical noise of pitting corrosion for high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2018, 38(01): 26
14 安朋亮, 梁平, 任建民等. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2018, 38(01): 26
15 Xia D H, Song S, Behnamian Y, et al. Review—Electrochemical Noise Applied in Corrosion Science: Theoretical and Mathematical Models towards Quantitative Analysis [J]. J. Electrochem. Soc.,2020, 167(8): 081507
16 Zhang J Q, Zhang S, Wang J M, et al. Analysis and application of electrochemical noise——Ⅰ. Principles of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21(05): 55
16 张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用——Ⅰ. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21(05): 55
17 Hu L H, Du N, Wang M F, et al. Electrochemical noise and electrochemical impedance spectroscopy to monitor the initial pitting behavior of 1Cr18Ni9Ti stainless steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27(04): 233
17 胡丽华, 杜楠, 王梅丰等. 电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为 [J]. 中国腐蚀与防护学报, 2007, 27(04): 233
18 Han L. A review on electrochemical noise analysis [J]. Corros. Prot., 2015, 36(01): 84
18 韩磊. 电化学噪声数据处理方法概述 [J]. 腐蚀与防护, 2015, 36(01): 84
19 Wang X, Wang J, Yue X. Characterization of corrosion process of Q235 carbon steel in simulated concrete pore solution by EIS and EN techniques [J]. Int. J. Electrochem. Sci., 2014, 9(11): 6558
20 Ye C Q, Hu R G, Dong S G, et al. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions [J]. J. Electroanal. Chem., 2013, 688(4): 275
21 Zhu Y C, Liu G M, Wang J J, et al. Electrochemical corrosion behaviors of typical grounding materials in water-saturated acid red soil [J]. Mater. Mech. Eng., 2020, 44(09): 36
21 朱亦晨, 刘光明, 王金金等. 典型接地材料在水饱和酸性红壤中的电化学腐蚀行为 [J]. 机械工程材料, 2020, 44(09): 36
22 Lin B. Study on inhibition effect of some organic inhibitors on carbon steel in carbonated simulatied concrete pore solutions [D]. Beijing: Beijing university of chemical technology, 2019
22 林冰. 模拟碳化混凝土孔隙液中几种有机缓蚀剂对碳钢的缓蚀作用 [D]. 北京: 北京化工大学, 2019
23 Du Y L, Zhang J X, Jiang J, et al. Corrosion behavior of reinforced steel in simulated pore solution with gradual augment of Cl- [J]. J. Chin. Soc. Corros. Prot., 2013, 33(04): 331
23 杜雅莉, 张俊喜, 蒋俊等. Cl-浓度渐变的混凝土孔隙液中钢筋的腐蚀过程 [J]. 中国腐蚀与防护学报, 2013, 33(04): 331
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[11] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
[15] 尹奇,刘淼然,刘雨薇,潘晨,王振尧. MgCl2对锌在干湿交替环境中腐蚀行为的影响[J]. 材料研究学报, 2019, 33(9): 705-712.