Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 381-391    DOI: 10.11901/1005.3093.2021.134
  研究论文 本期目录 | 过刊浏览 |
利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究
杨留洋1, 谭卓伟2, 李同跃3, 张大磊1(), 邢少华4(), 鞠虹1
1.中国石油大学(华东)材料科学与工程学院 青岛 266580
2.中国石油大学(华东)新能源学院 青岛 266580
3.海洋石油工程(青岛)有限公司制管装船作业部 青岛 266580
4.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques
YANG Liuyang1, TAN Zhuowei2, LI Tongyue3, ZHANG Dalei1(), XING Shaohua4(), JU Hong1
1.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2.College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
3.Offshore Oil Engineering (Qingdao) Co. Ltd., Pipe Manufacturing and Shipment Operation Department, Qingdao 266580, China
4.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
Liuyang YANG, Zhuowei TAN, Tongyue LI, Dalei ZHANG, Shaohua XING, Hong JU. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. Chinese Journal of Materials Research, 2022, 36(5): 381-391.

全文: PDF(8806 KB)   HTML
摘要: 

油气管道内缺陷的存在会使油气输运过程中出现局部区域流体急剧变化,导致管道腐蚀失效。本文通过微电极阵列测试技术(WBE)以及宏观电化学测试技术(EIS)研究管道缺陷处的冲刷腐蚀行为,以COMSOL Multiphysics中的流体力学模块辅助分析缺陷不同区域在流动状态下的腐蚀机制。结果表明,缺陷不同区域之间的流场变化导致腐蚀差异性,紧邻缺陷的上缘与下缘区域承受较大的湍流动能及壁面剪切力表现为阳极,腐蚀较为严重;缺陷底层区域以及远离缺陷两侧的区域由于湍流动能较小而边界层厚度大,离子传质作用较弱,表现为阴极,缺陷底层区域相比于缺陷上下缘区腐蚀进行缓慢。随着流动腐蚀时间的延长,缺陷上下缘区域腐蚀更为严重,缺陷整体有沿深度方向扩展加深的趋势。

关键词 材料失效与保护缺陷WBE电化学CO2腐蚀传质壁面剪切力    
Abstract

The existence of defects in oil and gas pipelines will cause rapid changes in local area fluids where the defects located, which during oil and gas transportation may lead to pipeline corrosion failure. For understanding the nature of this phenomenon, the corrosion behavior of defects in CO2 saturated NACE solution was studied via wire beam electrodes (WBE)- and electrochemical impedance spectroscope (EIS)-techniques, meanwhile, the relevant corrosion mechanism of defects located in different regions in the flow field was analyzed by means of the hydrodynamics modules of the so called "COMSOL Multiphysics". The results show that the variation of flow field on defects in different locations may lead to different appearance of corrosion there. The areas nearby the upper and lower edges of the defect may be subjected to large turbulent kinetic energy and wall shear stress, which may naturally act as anode, hence are suffered from serious corrosion. On the other hand, the bottom area of the defect and the area far away from the defect may act as cathode due to small turbulent kinetic energy and large boundary layer thickness, thus the corrosion progresses slowly there. With the extension of the flow corrosion time, the corrosion of the upper and lower edges of the defect becomes more serious, as a whole, defects have a tendency to expand and deepen vertically.

Key wordsmaterials failure and protection    defects    WBE    electrochemical    CO2 corrosion    mass transfer    wall shear stress
收稿日期: 2021-02-06     
ZTFLH:  TG172.6+3  
基金资助:国家自然科学基金(51774314);山东省自然科学基金(ZR2018MEM002);中国石油大学(华东)自主创新项目(19CX05001A);山东省重点研发计划(2019GHY112065)
作者简介: 杨留洋,男,1995年生,硕士生
图1  电极丝插槽示意图
图2  丝束电极阵列实物图
图3  循环流动腐蚀测试环路示意图
图4  缺陷区网格划分二维模型
图5  微电极阵列测试下电偶电流等值线分布图
图6  WBE测试下各分区平均电偶电流的分布变化图
图7  试样不同位置在冲刷12 h之后的EIS谱图变化
图8  用于EIS拟合的等效电路模型
PositionRs/Ω·cm2Y0(Qf)/Ω-1 cm-2s nRf/Ω·cm2Y0(Qct)/Ω-1 cm-2s nRct/Ω·cm2
Upper 16.670×10-16.475×10-43.3095.762×10-314.41
Upper 25.281×10-14.645×10-33.0036.359×10-310.08
Defects6.973×10-15.264×10-33.6823.169×10-315.27
Lower 15.608×10-1--2.344×10-25.092
Lower 26.523×10-19.729×10-43.1336.353×10-314.58
表1  缺陷试样不同排列耦合的阻值参数变化
图9  中间一行电极丝腐蚀形貌
图10  去除腐蚀产物膜之后的三维形貌和缺陷区去除腐蚀产物前后的深度变化
图11  缺陷试样不同分区示意图
图12  缺陷及其周边区域的流速及湍流动能分布变化
图13  缺陷及其周边区域壁面剪切力变化曲线
图14  缺陷区湍流耗散率变化曲线
1 Ding R, Yao B H, Fang X B. Analysis of corrosion factors and discussion of protection countermeasures of long-distance buried oil and gas pipeline [J]. Appl. Chem. Ind., 2019, 48: 2972
1 丁 锐, 姚宝慧, 方孝斌. 长输地埋油气管道腐蚀因素分析与防护对策探讨 [J]. 应用化工, 2019, 48: 2972
2 Tan Z W, Yang L Y, Zhang D L, et al. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49: 186
doi: 10.1016/j.jmst.2019.10.023
3 Gong W W, Yang B K, Chen Y, et al. In situ SECM observation of corrosion behavior of carbon steel at defects of epoxy coating under AC current conditions [J]. Chin. J. Mater. Res., 2020, 34: 545
3 公维炜, 杨丙坤, 陈 云 等. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为 [J]. 材料研究学报, 2020, 34: 545
doi: 10.11901/1005.3093.2019.571
4 Olvera-Martínez M E, Mendoza-Flores J, Genesca J. CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors [J]. J. Loss Prev. Process Ind., 2015, 35: 19
doi: 10.1016/j.jlp.2015.03.006
5 Cui Y. Research of residual strength evaluation methods of the high-strength steel gas pipeline with internal corrosion defects [D]. Beijing: Beijing Jiaotong University, 2015
5 崔 钺. 含内腐蚀缺陷高强钢输气管道剩余强度的评估方法研究 [D]. 北京: 北京交通大学, 2015
6 Fatah M C, Ismail M C. Empirical equation of CO2 corrosion with presence of low concentrations of acetic acid under turbulent flow conditions [J]. Corros. Eng., Sci. Technol., 2011, 46: 49
8 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines – A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
9 Zhu M, Du C W, Li X G, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2014, 87: 224
doi: 10.1016/j.corsci.2014.06.028
10 Wang Z B, Zheng Y G, Yi J Z. The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium [J]. Tribol. Int., 2019, 133: 67
doi: 10.1016/j.triboint.2019.01.006
11 Tan Z W, Zhang D L, Yang L Y, et al. Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions [J]. Tribol. Int., 2020, 146: 106145
doi: 10.1016/j.triboint.2019.106145
12 Yamagata T, Ito A, Sato Y, et al. Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning [J]. Exp. Therm. Fluid Sci., 2014, 52: 239
doi: 10.1016/j.expthermflusci.2013.09.017
13 Sun J L, Cheng Y F. Modeling of mechano-electrochemical interaction between circumferentially aligned corrosion defects on pipeline under axial tensile stresses [J]. J. Pet. Sci. Eng., 2021, 198: 108160
doi: 10.1016/j.petrol.2020.108160
14 Wang R H, Shenoi R A, Sobey A. Ultimate strength assessment of plated steel structures with random pitting corrosion damage [J]. J. Constr. Steel Res., 2018, 143: 331
doi: 10.1016/j.jcsr.2018.01.014
15 Wang Y H, Wang W, Liu Y Y, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode [J]. Corros. Sci., 2011, 53: 2963
doi: 10.1016/j.corsci.2011.05.051
16 Zhang D L, Wang W, Li Y. Wire beam electrode technique for investigating galvanic corrosion behavior of hot-dip galvanized steel-scratch defect [J]. Chin. J. Mater. Res., 2009, 23: 343
16 张大磊, 王 伟, 李 焰. 热镀锌钢材的电偶腐蚀行为-划痕型缺陷 [J]. 材料研究学报, 2009, 23: 343
17 Stoulil J, Kaňok J, Kouřil M, et al. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment [J]. J. Nucl. Mater., 2013, 443: 20
doi: 10.1016/j.jnucmat.2013.06.031
18 Pang L, Wang Z B, Zheng Y G, et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54: 95
doi: 10.1016/j.jmst.2020.03.041
19 Farelas F, Galicia M, Brown B, et al. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS [J]. Corros. Sci., 2010, 52: 509
doi: 10.1016/j.corsci.2009.10.007
20 Yong X Y, Zhang Y Q, Li D L, et al. Effect of near-wall hydrodynamic parameters on flow induced corrosion [J]. Corros. Sci. Prot. Technol., 2011, 23: 245
20 雍兴跃, 张雅琴, 李栋梁 等. 近壁处流体力学参数对流动腐蚀的影响 [J]. 腐蚀科学与防护技术, 2011, 23: 245
21 Tan Z W, Yang L Y, Wang Z B, et al. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field [J]. CIESC J., 2021, 72: 2203
21 谭卓伟, 杨留洋, 王振波 等. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究 [J]. 化工学报, 2021, 72: 2203
22 Owen J, Godfrey J, Ma W L, et al. An experimental and numerical investigation of CO2 corrosion in a rapid expansion pipe geometry [J]. Corros. Sci., 2020, 165: 108362
doi: 10.1016/j.corsci.2019.108362
23 Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution [J]. Chin. J. Mater. Res., 2011, 25: 39
23 贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为 [J]. 材料研究学报, 2011, 25: 39
24 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
25 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
26 Okafor P C, Nesic S. Effect of acetic acid on CO2 corrosion of carbon steel in vapor-water two-phase horizontal flow [J]. Chem. Eng. Commun., 2007, 194: 141
doi: 10.1080/00986440600642975
27 Kahyarian A, Nesic S. H2S corrosion of mild steel: a quantitative analysis of the mechanism of the cathodic reaction [J]. Electrochim. Acta, 2019, 297: 676
doi: 10.1016/j.electacta.2018.12.029
28 Ochoa N, Vega C, Pébère N, et al. CO2 corrosion resistance of carbon steel in relation with microstructure changes [J]. Mater. Chem. Phys., 2015, 156: 198
doi: 10.1016/j.matchemphys.2015.02.047
29 Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines [J]. Energy Fuels, 2012, 26: 4098
doi: 10.1021/ef3002795
30 Olvera-Martínez M E, Mendoza-Flores J, Rodríguez-Gómez F J, et al. Assessment of the effects of acetic acid and turbulent flow conditions on the corrosion of API 5L X52 steel in aqueous CO2 solutions [J]. Mater. Corros., 2018, 69: 376
31 Tang Y F, Qiao Z L, Cao Y, et al. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems [J]. Sep. Purif. Technol., 2020, 248: 116999
doi: 10.1016/j.seppur.2020.116999
32 Cai F, Liu W, Fan X H, et al. Electrochemical corrosion behavior of X70 pipeline steel in turbulence zone under jet impingement at high temperature and high pressure CO2 environment [J]. J. Phys. Chem., 2013, 29: 1003
32 蔡 峰, 柳 伟, 樊学华 等. 高温高压喷射湍流区中X70管线钢CO2腐蚀电化学特征 [J]. 物理化学学报, 2013, 29: 1003
[1] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[3] 刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆. 梯度结构铜铝合金的室温加工硬化行为[J]. 材料研究学报, 2023, 37(2): 95-101.
[4] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[5] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[6] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[7] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[8] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[9] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[10] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[11] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[12] 姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
[13] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[14] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[15] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.