|
|
利用WBE及EIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究 |
杨留洋1, 谭卓伟2, 李同跃3, 张大磊1( ), 邢少华4( ), 鞠虹1 |
1.中国石油大学(华东)材料科学与工程学院 青岛 266580 2.中国石油大学(华东)新能源学院 青岛 266580 3.海洋石油工程(青岛)有限公司制管装船作业部 青岛 266580 4.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237 |
|
Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques |
YANG Liuyang1, TAN Zhuowei2, LI Tongyue3, ZHANG Dalei1( ), XING Shaohua4( ), JU Hong1 |
1.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China 2.College of New Energy, China University of Petroleum (East China), Qingdao 266580, China 3.Offshore Oil Engineering (Qingdao) Co. Ltd., Pipe Manufacturing and Shipment Operation Department, Qingdao 266580, China 4.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
引用本文:
杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBE及EIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
Liuyang YANG,
Zhuowei TAN,
Tongyue LI,
Dalei ZHANG,
Shaohua XING,
Hong JU.
Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. Chinese Journal of Materials Research, 2022, 36(5): 381-391.
1 |
Ding R, Yao B H, Fang X B. Analysis of corrosion factors and discussion of protection countermeasures of long-distance buried oil and gas pipeline [J]. Appl. Chem. Ind., 2019, 48: 2972
|
1 |
丁 锐, 姚宝慧, 方孝斌. 长输地埋油气管道腐蚀因素分析与防护对策探讨 [J]. 应用化工, 2019, 48: 2972
|
2 |
Tan Z W, Yang L Y, Zhang D L, et al. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49: 186
doi: 10.1016/j.jmst.2019.10.023
|
3 |
Gong W W, Yang B K, Chen Y, et al. In situ SECM observation of corrosion behavior of carbon steel at defects of epoxy coating under AC current conditions [J]. Chin. J. Mater. Res., 2020, 34: 545
|
3 |
公维炜, 杨丙坤, 陈 云 等. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为 [J]. 材料研究学报, 2020, 34: 545
doi: 10.11901/1005.3093.2019.571
|
4 |
Olvera-Martínez M E, Mendoza-Flores J, Genesca J. CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors [J]. J. Loss Prev. Process Ind., 2015, 35: 19
doi: 10.1016/j.jlp.2015.03.006
|
5 |
Cui Y. Research of residual strength evaluation methods of the high-strength steel gas pipeline with internal corrosion defects [D]. Beijing: Beijing Jiaotong University, 2015
|
5 |
崔 钺. 含内腐蚀缺陷高强钢输气管道剩余强度的评估方法研究 [D]. 北京: 北京交通大学, 2015
|
6 |
Fatah M C, Ismail M C. Empirical equation of CO2 corrosion with presence of low concentrations of acetic acid under turbulent flow conditions [J]. Corros. Eng., Sci. Technol., 2011, 46: 49
|
8 |
Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines – A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
|
9 |
Zhu M, Du C W, Li X G, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2014, 87: 224
doi: 10.1016/j.corsci.2014.06.028
|
10 |
Wang Z B, Zheng Y G, Yi J Z. The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium [J]. Tribol. Int., 2019, 133: 67
doi: 10.1016/j.triboint.2019.01.006
|
11 |
Tan Z W, Zhang D L, Yang L Y, et al. Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions [J]. Tribol. Int., 2020, 146: 106145
doi: 10.1016/j.triboint.2019.106145
|
12 |
Yamagata T, Ito A, Sato Y, et al. Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning [J]. Exp. Therm. Fluid Sci., 2014, 52: 239
doi: 10.1016/j.expthermflusci.2013.09.017
|
13 |
Sun J L, Cheng Y F. Modeling of mechano-electrochemical interaction between circumferentially aligned corrosion defects on pipeline under axial tensile stresses [J]. J. Pet. Sci. Eng., 2021, 198: 108160
doi: 10.1016/j.petrol.2020.108160
|
14 |
Wang R H, Shenoi R A, Sobey A. Ultimate strength assessment of plated steel structures with random pitting corrosion damage [J]. J. Constr. Steel Res., 2018, 143: 331
doi: 10.1016/j.jcsr.2018.01.014
|
15 |
Wang Y H, Wang W, Liu Y Y, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode [J]. Corros. Sci., 2011, 53: 2963
doi: 10.1016/j.corsci.2011.05.051
|
16 |
Zhang D L, Wang W, Li Y. Wire beam electrode technique for investigating galvanic corrosion behavior of hot-dip galvanized steel-scratch defect [J]. Chin. J. Mater. Res., 2009, 23: 343
|
16 |
张大磊, 王 伟, 李 焰. 热镀锌钢材的电偶腐蚀行为-划痕型缺陷 [J]. 材料研究学报, 2009, 23: 343
|
17 |
Stoulil J, Kaňok J, Kouřil M, et al. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment [J]. J. Nucl. Mater., 2013, 443: 20
doi: 10.1016/j.jnucmat.2013.06.031
|
18 |
Pang L, Wang Z B, Zheng Y G, et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54: 95
doi: 10.1016/j.jmst.2020.03.041
|
19 |
Farelas F, Galicia M, Brown B, et al. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS [J]. Corros. Sci., 2010, 52: 509
doi: 10.1016/j.corsci.2009.10.007
|
20 |
Yong X Y, Zhang Y Q, Li D L, et al. Effect of near-wall hydrodynamic parameters on flow induced corrosion [J]. Corros. Sci. Prot. Technol., 2011, 23: 245
|
20 |
雍兴跃, 张雅琴, 李栋梁 等. 近壁处流体力学参数对流动腐蚀的影响 [J]. 腐蚀科学与防护技术, 2011, 23: 245
|
21 |
Tan Z W, Yang L Y, Wang Z B, et al. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field [J]. CIESC J., 2021, 72: 2203
|
21 |
谭卓伟, 杨留洋, 王振波 等. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究 [J]. 化工学报, 2021, 72: 2203
|
22 |
Owen J, Godfrey J, Ma W L, et al. An experimental and numerical investigation of CO2 corrosion in a rapid expansion pipe geometry [J]. Corros. Sci., 2020, 165: 108362
doi: 10.1016/j.corsci.2019.108362
|
23 |
Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution [J]. Chin. J. Mater. Res., 2011, 25: 39
|
23 |
贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为 [J]. 材料研究学报, 2011, 25: 39
|
24 |
Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
|
25 |
Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
|
26 |
Okafor P C, Nesic S. Effect of acetic acid on CO2 corrosion of carbon steel in vapor-water two-phase horizontal flow [J]. Chem. Eng. Commun., 2007, 194: 141
doi: 10.1080/00986440600642975
|
27 |
Kahyarian A, Nesic S. H2S corrosion of mild steel: a quantitative analysis of the mechanism of the cathodic reaction [J]. Electrochim. Acta, 2019, 297: 676
doi: 10.1016/j.electacta.2018.12.029
|
28 |
Ochoa N, Vega C, Pébère N, et al. CO2 corrosion resistance of carbon steel in relation with microstructure changes [J]. Mater. Chem. Phys., 2015, 156: 198
doi: 10.1016/j.matchemphys.2015.02.047
|
29 |
Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines [J]. Energy Fuels, 2012, 26: 4098
doi: 10.1021/ef3002795
|
30 |
Olvera-Martínez M E, Mendoza-Flores J, Rodríguez-Gómez F J, et al. Assessment of the effects of acetic acid and turbulent flow conditions on the corrosion of API 5L X52 steel in aqueous CO2 solutions [J]. Mater. Corros., 2018, 69: 376
|
31 |
Tang Y F, Qiao Z L, Cao Y, et al. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems [J]. Sep. Purif. Technol., 2020, 248: 116999
doi: 10.1016/j.seppur.2020.116999
|
32 |
Cai F, Liu W, Fan X H, et al. Electrochemical corrosion behavior of X70 pipeline steel in turbulence zone under jet impingement at high temperature and high pressure CO2 environment [J]. J. Phys. Chem., 2013, 29: 1003
|
32 |
蔡 峰, 柳 伟, 樊学华 等. 高温高压喷射湍流区中X70管线钢CO2腐蚀电化学特征 [J]. 物理化学学报, 2013, 29: 1003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|