Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (9): 675-681    DOI: 10.11901/1005.3093.2020.309
  研究论文 本期目录 | 过刊浏览 |
无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护
陈艺文1, 王成1,3(), 娄霞1, 李定骏1, 周科1, 陈明辉4,5, 王群昌4, 朱圣龙2,4,5, 王福会4,5
1.长寿命高温材料国家重点实验室东方汽轮机有限公司 德阳 618000
2.中国科学院金属研究所师昌绪先进材料创新中心 沈阳 110016
3.江苏集萃道路工程技术与装备研究所有限公司 徐州 220005
4.东北大学材料科学与工程学院 沈阳 110819
5.沈阳材料科学国家研究中心 沈阳 110016
Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor
CHEN Yiwen1, WANG Cheng1,3(), LOU Xia1, LI Dingjun1, ZHOU Ke1, CHEN Minghui4,5, WANG Qunchang4, ZHU Shenglong2,4,5, WANG Fuhui4,5
1.State Key Laboratory of Long-life High Temperature Materials, Dong Fang Turbine Co. , Ltd. Deyang, 61800, China
2.Shichangxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institute Co. , Ltd. Xuzhou 220005, China
4.School of Materials Science and Engineering, Northeastern University, Shenyang 110189, China
5.Shenyang National Laboratory for Materials Science, Shenyang 110016, China
引用本文:

陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
Yiwen CHEN, Cheng WANG, Xia LOU, Dingjun LI, Ke ZHOU, Minghui CHEN, Qunchang WANG, Shenglong ZHU, Fuhui WANG. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. Chinese Journal of Materials Research, 2021, 35(9): 675-681.

全文: PDF(9694 KB)   HTML
摘要: 

采用物理共混工艺制备无机硅酸盐复合涂层,研究其对ZG12Cr9Mo1Co1NiVNbNB(CB2)铁素体耐热钢在650℃水蒸气中氧化的防护。结果表明,CB2钢在650°C水蒸气中的氧化严重,氧化过程分段遵循抛物线规律,生成了双层非保护性Fe2O3氧化膜。涂装无机硅酸盐复合涂层使CB2钢的氧化速率显著降低,涂层还具有良好的抗热震性能。在涂层与基体钢的界面处生长一层厚度约2 μm的富铬氧化层,使合金的抗氧化性能提高。

关键词 材料失效与保护无机复合涂层高温水蒸气氧化CB2耐热钢    
Abstract

A novel inorganic silicate composite coating was prepared by physical blending process with potassium silicate of module 3.25 as binder, alpha alumina, copper chromium black and white mica as pigment, and proper amount curing agent. Then the oxidation behavior of the ZG12Cr9Mo1Co1NiVNbNB (CB2) ferritic heat resistant steel without and with the composite coating was comparatively investigated at 650°C in atmosphere of oxygen flow with 20% water vapors. The results show that serious oxidation of CB2 steel occurred, which follows the parabolic law in different periods and resulted in the formation of a two-layered oxide scale of poorly protective Fe2O3. The application of the composite coating could reduce markedly the oxidation rate of the CB2 steel, meanwhile the coating presented also excellent resistance to cyclically thermal shock. Furthermore, a thin and continuous Cr-rich oxide layer could be detected on the steel surface beneath the composite coating after the oxidation test, to which the enhancement of oxidation resistance of the coated CB2 steel may be ascribed.

Key wordsmaterials failure and protection    inorganic compound coatings    high temperature water vapor oxidation    CB2 heat resistance steel
收稿日期: 2020-07-23     
ZTFLH:  TG174.45  
基金资助:长寿命高温材料国家重点实验室(DTCC28EE190229);国家重点研发计划项目(2018YFB2003601)
作者简介: 陈艺文,男,1986年生,工程师
图1  CB2钢在650℃水蒸气中的氧化动力学曲线
StageKp/mg2·cm-4·h-1Periods/h
Initial stage7.61×10-50~4
Stable stage5.95×10-517~66
Accelerate stage Ⅰ1.49×10-3193~647
Accelerate stage Ⅱ1.15×10-21173~1500
表1  CB2耐热钢氧化动力学曲线的抛物线拟合结果
图2  CB2耐热钢在650℃、水蒸气中氧化后的SEM形貌
图3  CB2耐热钢的XRD谱
图4  涂装涂层的CB2耐热钢在650℃、水蒸气环境中氧化后的SEM形貌
图5  涂层热震50次后的SEM形貌
图6  涂装复合涂层的CB2耐热钢氧化后的EDS能谱线扫描
图7  涂层与CB2钢界面的富Cr氧化层
1 Yang Y P, Xu C, Xu G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery [J]. Energ. Convers. Manage, 2015, 89:137
2 Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-dupercritical steam power plants [J]. Therm. Eng., 2017, 64: 83
3 János M B. High efficiency electric power generation: the environmental role [J]. Prog. Energy Combust. Sci., 2007, 33: 107
4 Mandziej S T, Vyrostkova A. Creep and fracture behavior of long-annealed weld HAZ in CB2 steel [J]. Weld. World, 2020, 64:573
5 Zhu Y R, Fan H Y, Sun L, et al. Effect of normalizing temperature on microstructure and properties of heat-resistant steel CB2 [J]. Hot Work. Tech., 2015, 44:224
5 朱玉蓉, 范洪远, 孙兰等. 正火温度对CB2耐热钢组织和性能的影响[J]. 热加工工艺, 2015, 44:224
6 Yang X, Sun L, Xiong J, et al. Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel [J]. Int. J. Min. Met. Mater., 2016, 23: 168
7 He H J, Sheng G M, Jiao Y J, et al. Effect of post welding heat treatment on microstructure and mechanical properties of CB2 heat resistant steel joints [J]. Heat Treat. Met., 2018, 43(2): 194
7 何洪杰, 盛光敏, 焦英俊等. 焊后热处理对CB2耐热钢焊接头组织及力学性能的影响 [J]. 金属热处理, 2018, 43(2): 194
8 Asteman H, Svensson J E, Johansson L G. Oxidation of 310 steel in H2O/O2 mixtures at 600℃: the effect of water-vapour-enhanced chromium evaporation [J]. Corros. Sci., 2002, 44: 2635
9 Peng X, Yan J, Zhou Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air [J]. Acta Materialia, 2005, 53: 5079
10 Wang Z W, Gong X T, Xie X. High temperature oxidation behavior of pure Cr at 650℃ [J]. Heat Treat. Met., 2017, 42(3): 9
10 王志武, 龚雪婷, 谢兴. 纯铬的650℃高温氧化行为 [J]. 金属热处理, 2017, 42(3): 9
11 Shen M, Zhu S L, Wang F H. A general strategy for the ultrafast surface modification of metals [J]. Nat. Commun., 2016, 7: 13797
12 Yamauchi A, Kurokawa K, Takahashi H. Evaporation of Cr2O3 in atmospheres containing H2O [J]. Oxid. Met., 2003, 59: 517
13 Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600℃ [J]. Corros. Sci., 2020, 169: 108599
14 Wang Z W,Gong X T,Wang C H. Oxidation behavior of Fe-Cr alloy with different content of Cr in high-temperature and high-pressure vapor [J]. Mater. Prot., 2017, 50(5): 33
14 王志武, 龚雪婷, 王传慧. 不同Cr 含量的Fe-Cr合金高温高压水蒸气氧化行为 [J]. 材料保护, 2017, 50(5): 33
15 Robino C V. Representation of mixed reactive gases on free energy (Ellingham-Richardson) diagrams [J]. Metall. Mater.Trans. 1996, 27B: 65
16 Othman N K, Zhang J Q, Young D J. Water vapour effects on Fe-Cr alloy oxidation [J]. Oxid. Met., 2010, 73: 337
17 Opila E J, Myers D L, Jacobson N S, et al. Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g) [J]. J. Phys. Chem. A, 2007, 111: 1971
18 Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600℃. Corros. Sci., 2006, 48: 2014
19 Park S J, Seo M K. The effects of MoSi2 on the oxidation behavior of carbon/carbon composites. Carbon, 2001, 39: 1229
20 Gree A P, Louw W C, Swart HC. The oxidation of industrial FeCrMo steel. Corros. Sci., 2000, 42: 1725
21 Wei L L, Chen LQ, Liu H L, et al. Precipitation behavior of laves phase in the vicinity of oxide film of ferritic stainless steel: selective oxidation‑induced precipitation. Oxid. Met. 2020, 93: 195
22 Abea F, Kutsumib H, Haruyamac H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros. Sci., 2017, 114: 1
23 Yuan J T, Wu X M, Wang W, et al. The effect of surface finish on the scaling behavior of stainless steel in steam and supercritical water [J]. Oxid. Met., 2013, 79: 541
24 Yue Z W, Fu Min, Li X G. et al. Effect of shot peening treatment on steam oxidation resistance of TP304H reheater tube [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 137
24 岳增武, 傅敏, 李辛庚等. 内壁喷丸处理对TP304H耐热钢锅炉管抗水蒸汽氧化性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32(2): 137
25 Wang C, Wang W, Zhu S L, et al. Oxidation inhibition of γ-TiAl alloy at 900℃ by inorganic silicate composite coatings [J]. Corros. Sci., 2013, 76: 284
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[6] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[11] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
[15] 尹奇,刘淼然,刘雨薇,潘晨,王振尧. MgCl2对锌在干湿交替环境中腐蚀行为的影响[J]. 材料研究学报, 2019, 33(9): 705-712.