Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 409-415    DOI: 10.11901/1005.3093.2021.411
  研究论文 本期目录 | 过刊浏览 |
TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能
高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍()
西安工业大学材料与化工学院 西安 710021
Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy
GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei()
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
Wei GAO, Jiangnan LIU, Jingpeng WEI, Yuhong YAO, Wei YANG. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. Chinese Journal of Materials Research, 2022, 36(6): 409-415.

全文: PDF(2472 KB)   HTML
摘要: 

在电解液中添加不同浓度的氧化亚铜微粒,然后在TC4钛合金表面制备掺杂铜氧化物的微弧氧化层。在模拟海水中进行微弧氧化层的摩擦磨损和抗菌实验,并使用扫描电镜(SEM)、X射线衍射仪(XRD)、X光电子能谱仪(XPS)和显微硬度仪等手段对比研究了掺杂氧化亚铜的微弧氧化层的微观结构和性能。结果表明:掺杂氧化亚铜的微弧氧化层表面呈多孔形貌特征,但是微孔的数量较少和孔径尺寸较小,氧化亚铜微粒在膜层中以氧化铜和氧化亚铜两种形式存在;与未掺杂氧化亚铜的微弧氧化层相比,添加不同浓度氧化亚铜的微弧氧化层在模拟海水中的抗磨损性能和抗菌性能显著提高,但是微弧氧化层中的铜元素使其耐蚀性有所降低。

关键词 材料失效与保护钛合金微弧氧化氧化亚铜微观结构性能    
Abstract

The microarc oxidation coating doped with coprous oxide was prepared on the surface of TC4 Ti-alloy by adding different amount of cuprous oxide particles into the electrolyte. The microstructure and properties of the cuprous oxide doped microarc oxidation coating were investigated by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscope (XPS) and microhardness tester. The results show that the surface of the microarc oxidation coating doped with cuprous oxide is porous, but the number and size of micropores are small. However the doped Cu oxides are present in the coating in two forms, namely copper oxide and cuprous oxide. Compared with the microarc oxidation coating without doping of cuprous oxide, the wear resistance and antibacterial performance of microarc oxidation coating doped with different amount of cuprous oxide are significantly improved in artifitial seawater, but their corrosion resistance degraded.

Key wordsmaterials failure and protection    titanium alloy    micro arc oxidation    Cu2O    microstructure    performance
收稿日期: 2021-07-16     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52071252)
作者简介: 高巍,男,1977年生,博士生
图1  用不同氧化亚铜浓度制备的TC4表面微弧氧化层的SEM形貌
SampleOAlSiTiCu
0 g/L511.626.321.1-
2 g/L50.91.426.720.50.6
6 g/L47.71.323.820.17.1
10 g/L46.41.322.721.58.1
表1  不同氧化亚铜浓度制备的TC4表面微弧氧化层的EDS结果
图2  TC4表面不同含量氧化亚铜微粒制备微弧氧化层的XRD谱
图3  6 g/L氧化亚铜微粒的微弧氧化层的XPS谱
图4  添加不同浓度氧化亚铜微粒TC4表面微弧氧化层的摩擦曲线
图5  添加不同浓度氧化亚铜微粒TC4表面微弧氧化层磨损后的SEM照片和EDS结果
图6  添加不同浓度氧化亚铜微粒微弧氧化层的浸泡失重曲线
图7  添加不同浓度氧化亚铜TC4表面微弧氧化层的金黄色葡萄球菌附着形貌
Sample0 g/L2 g/L6 g/L10 g/L
OD1.0360.5950.4650.275
表2  金黄色葡萄球菌在氧化亚铜掺杂微弧氧化层表面培养3 d后的OD值
1 Xia S L, Wang G, Yang X, et al. Application of titanium and titanium alloy in ships [J]. Metal Processing, 2016, 19: 40
1 夏申琳, 王 刚, 杨 晓 等. 钛及钛合金在船舶中的应用 [J]. 金属加工(冷加工), 2016, 19: 40
2 Li D Q, Wang S S, Bao E D. Titanium alloy material in the ship in the material application and development [J]. World Nonferrous Metals, 2015, 09: 127
2 李德强, 王树森, 包恩达. 钛合金材料在船舶材料上的应用与发展 [J]. 世界有色金属, 2015, 09: 127
3 Wang H L. Application status and development of titanium and titanium alloy in ship building industry [J]. Special Steel Technology, 2013, 19(04): 1
3 王怀柳. 钛及钛合金在船舶工业的应用现状及发展 [J]. 特钢技术, 2013, 19(04): 1
4 Tang H P. Research progresson engineering application of Ti-6Al-4V alloy fabricated by selective electron beam melting process [J]. Materials China, 2020, 39(Z1): 551
4 汤慧萍. 粉末床电子束3D打印Ti-6Al-4V合金的工程应用技术研究进展 [J]. 中国材料进展, 2020, 39(Z1): 551
5 Wu J X. Application of titanium alloy in ship materials [J]. Ship Materials and Market, 2020, 08: 5
5 吴建新. 钛合金材料在船舶材料上的应用 [J].. 船舶物资与市场, 2020, 08: 5
6 Fan Y, Xu X R, Shi Z F, et al. Research progress of surface modification of biomedical metallic materials [J]. Materials Report, 2020, 34(S2): 1327
6 范 燕, 徐昕荣, 石志峰 等. 生物医用金属材料表面改性的研究进展 [J]. 材料导报, 2020, 34(S2): 1327
7 Wang C, Li J J, Wang T, et al. Microstructure and properties of pure titanium coating on Ti-6Al-4V alloy by laser cladding [J]. Surface and Coatings Technology, 2021, 416: 127137
doi: 10.1016/j.surfcoat.2021.127137
8 Roknian M, Fattah-alhosseini A, Gashti S O, et al. Plasma electrolytic oxidation coatings on pure Ti substrate: effects of Na3PO4 concentration on morphology and corrosion behavior of coatings in Ringer's physiological solution [J]. Journal of Materials Engineering and Performance, 2018, 27(3): 1343
doi: 10.1007/s11665-018-3236-7
9 Zhao Q M, Yi L, Hu A N, et al. Antibacterial and osteogenic activity of a multifunctional microporous coating codoped with Mg, Cu and F on titanium [J]. Journal of Materials Chemistry B, 2019, 7(14): 2284
doi: 10.1039/C8TB03377C
10 Zhang Y, Chen Y, Zhao Y, et al. Photocatalytic activity and microstructure of micro-arc oxidized TiO2:Cr3+ composite coatings [J]. Materials Technology, 2018, 33(9): 592
doi: 10.1080/10667857.2018.1483469
11 Demirba A, Ayday A. Effect of Ag concentration on structure and wear behaviour of coatings formed by micro-arc oxidation on Ti6Al4V Alloy [J]. Surface Engineering, 2020: 1
12 Lv Y, Cai G Y, Zhang X X, et al. Microstructural characterization and in vitro biological performances of Ag, Zn co-incorporated TiO2 coating [J]. Ceramics International, 2020, 46: 29160
doi: 10.1016/j.ceramint.2020.08.089
13 Lian Y, Dai X Y, Zhang J. Characterization of micro-arc oxidation coatings on Ti6Al4V with addition of SiC particle [J]. Materials Research Express, 2020, 7(1): 016438
14 Aliofkhazraei M, Gharabagh R S, Teimouri M, et al. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium [J]. Journal of Alloys Compounds, 2016: 376
15 Gowtham S, Hariprasad S, Arunnellaiappan T, et al. An investigation on ZrO2 nano-particle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on Cp-Ti [J]. Surface and Coatings Technology, 2017, 313: 263
doi: 10.1016/j.surfcoat.2017.01.105
16 Yang W, Wu S K, Xu D P, et al. Preparation and performance of alumina ceramic coating doped with aluminum nitride by micro arc oxidation [J]. Ceramics International, 2020, 46(10): 17112
doi: 10.1016/j.ceramint.2020.03.179
17 Wang W. Study on TC4 titanium alloy micro-arc oxidation preparation process and coating sealing technology [D]. Beijing: Beijing University of Chemical Technology, 2020
17 王 伟. TC4钛合金微弧氧化制备工艺及膜层封孔技术研究 [D]. 北京: 北京化工大学硕士学位论文, 2020
18 Zhu H M, Ma L R, Zhao C X, et al. Effect of graphite on microstructure and corrosion resistance of micro arc oxidation coatings on TA7 titanium alloy [J]. Corrosion and Protection, 2020, 41(08): 18
18 朱和明, 马兰荣, 赵晨熙 等. 石墨对TA7钛合金表面微弧氧化涂层组织及耐蚀性的影响. 腐蚀与防护, 2020, 41(08): 18
19 Meghana S, Kabra P, Chakraborty S, et al. Understanding the pathway of antibacterial activity of copper oxide nanoparticles [J]. RSC Advances, 2015, 5(16): 122
20 Yao Y H, Yang W, Liu D J, et al. Preparation and corrosion behavior in marine environment of MAO coatings on magnesium alloy [J]. Materials, 2020, 13 (2): 345
doi: 10.3390/ma13020345
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.