Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 434-442    DOI: 10.11901/1005.3093.2019.501
  研究论文 本期目录 | 过刊浏览 |
Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为
郭铁明1,2(), 徐秀杰1,2, 张延文1,2, 宋志涛1,2, 董志林1,2, 金玉花1,2
1.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2.兰州理工大学材料科学与工程学院 兰州 730050
Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt
GUO Tieming1,2(), XU Xiujie1,2, ZHANG Yanwen1,2, SONG Zhitao1,2, DONG Zhilin1,2, JIN Yuhua1,2
1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
Tieming GUO, Xiujie XU, Yanwen ZHANG, Zhitao SONG, Zhilin DONG, Yuhua JIN. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. Chinese Journal of Materials Research, 2020, 34(6): 434-442.

全文: PDF(2628 KB)   HTML
摘要: 

采用干湿循环加速腐蚀实验,研究了Q345qNH耐候钢和Q345q桥梁钢在模拟西北地区工业大气环境的腐蚀介质(除冰盐+0.01 mol/L NaHSO3)中的腐蚀行为。用失重法研究了两种钢的腐蚀动力学曲线,并使用XRD、SEM 和电化学工作站等手段分析了两种钢腐蚀不同时间后锈层的物相、形貌结构及其电化学特性。结果表明:在除冰盐+NaHSO3的混合介质中,Q345qNH钢腐蚀100 h前的失重稍大于Q345q钢,腐蚀100 h后桥梁钢的失重量明显大于耐候钢;两种钢的腐蚀产物均由α-FeOOH,β-FeOOH,γ-FeOOH,Fe2O3,Fe3O4和FeOCl构成,但是Q345q钢中生成的不稳定β-FeOOH和FeOCl的含量明显高于Q345qNH钢,锈层的稳定性降低;随着腐蚀时间的延长两种钢锈层的自腐蚀电位均增大,自腐蚀电流密度均波动性减小,Q345qNH耐候钢的自腐蚀电位增大的速度高于Q345q钢,腐蚀后期其锈层的保护性优于普通桥梁钢。两种钢在混合介质中的腐蚀行为受多离子的耦合效应影响,锈层的致密性因β-FeOOH和FeOCl等不稳定腐蚀产物的生成而降低,但是仍有一定的保护性。Q345qNH耐候钢在除冰盐+0.01 mol/L NaHSO3混合介质中的耐蚀性优于Q345q普通桥梁钢。

关键词 材料失效与保护腐蚀行为评价干湿循环西北大气环境桥梁钢    
Abstract

Corrosion behavior of Q345qNH weathering steel and Q345q ordinary bridge steel in a mixed medium of simulated industrial environment solution and deicing salt was investigated by means of wet/dry cyclic accelerated corrosion test, The corrosion kinetics curves of the two steels were studied by weight loss method, and the phase, morphological structure and electrochemical characteristics of the rust layer after corrosion of the two steels for different times were analyzed using XRD, SEM and electrochemical workstation. The results show that the corrosion weight loss of Q345qNH weathering steel is slightly higher than that of Q345q bridge steel before 100 h. However, after 100 h the corrosion mass loss of bridge steel is obviously larger than that of weathering steel. The corrosion products were composed of α-FeOOH, β-FeOOH, γ-FeOOH, Fe2O3, Fe3O4 and FeOCl, but the content of unstable β-FeOOH and FeOCl on Q345q bridge steel was significantly higher than that on Q345qNH weathering steel, thereby, the rust scale on Q345q bridge steel presented lower stability; the free-corrosion potential of the rust layer on the two steels increased with the increasing time, and the free-corrosion potential of Q345qNH weathering steel increased faster than that of Q345q bridge steel, while, their free-corrosion current density showed undulatory attenuation. The protectiveness of the rust layer of weathering steel was better than that of ordinary bridge steel in the later stage of corrosion; the corrosion behavior of the two steels in the mixed medium was affected by the coupling effect of various ions. Due to the existence of unstable corrosion products such as β-FeOOH and FeOCl, the compactness of the rust layer reduced, even so, which still maintained protectiveness to certain extent. In general, the corrosion resistance of Q345qNH weathering bridge steel in the mixed media was better than that of Q345q ordinary bridge steel.

Key wordsmaterial failure and protection    corrosion behavior evaluation    wet and dry cycle    northwest atmospheric environment    bridge steel
收稿日期: 2019-11-04     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51865028);广东省“扬帆计划”引进创新创业团队专项(2015YT02G090)
作者简介: 徐秀杰,女,1989年生,硕士生
SteelsCSiMnPSAlNiCrCuVNbFe
Q345qNH0.0760.281.520.0120.0010.0270.360.480.310.0320.0045Bal.
Q345q0.1580.2461.2450.0230.022------Bal.
表1  Q345qNH钢和Q345q钢的化学成分
CorrodentGBpHIngredient
Deicing salt solutionGB/T 19746-20059.3±0.5(52.5 g±0.1 g)NaCl, (0.5 g±0.002 g)Na2SO4, (0.25 g±0.002 g)Na2SO3, (52.5 g±0.1 g)CaCl2·2H2O, (0.1 g±0.002 g)Na2S2O3
NaHSO3 solutionTB/T 2375-934.4-4.80.01 mol/L NaHSO3
Mixed solution4.7±0.5deicing salt solution+0.01 mol/L NaHSO3 solution
表2  腐蚀溶液的成分
图1  两种钢在混合介质中的腐蚀动力学曲线演变
图2  两种钢的腐蚀失重拟合曲线
Steels1st step2nd step
AnR2AnR2
Q345qNH0.55290.44010.99640.29450.56510.9724
Q345q0.00381.50410.96920.53310.48650.9999
表3  混合溶液双对数线性拟合结果
图3  两种钢的宏观腐蚀形貌
图4  Q345qNH钢锈层表面的SEM照片
图5  Q345q钢锈层表面的SEM照片
图6  两种钢腐蚀480 h后截面的SEM照片
图7  两种钢锈层的厚度与腐蚀时间的关系
图8  两种钢腐蚀480 h后的XRD图谱
图9  腐蚀不同时间两种钢中β-FeOOH+FeOCl含量的变化
图10  两种带锈钢腐蚀不同时间后的极化曲线
SteelsElectrochemical parameter24 h72 h144 h288 h480 h
Q345qNHEcorr/V-0.8909-0.8714-0.7488-0.799-0.6566
Icorr/mA·cm-20.25430.30800.21390.20140.1405
Q345qEcorr/V-0.9321-0.906-0.7891-0.8052-0.7563
Icorr/mA·cm-20.16560.26660.23670.14090.2240
表4  Q345钢腐蚀不同时间后锈层的电化学参数
[1] Houska C. Deicing salt-recognizing the corrosion threat [J]. Architecture Technique, 2011, (11): 174
[1] (凯瑟琳·胡斯卡. 认识除冰盐的腐蚀威胁, 合理选用耐腐蚀材料 [J]. 建筑技艺, 2011, (11): 174)
[2] Jang J W, Iwasaki I, Gillis H J, et al. Effect of corrosion-inhibitor-added deicing salts and salt substitutes on reinforcing steels: II. Influence of temperature and oxygen content [J]. Adv. Cem. Based Mater., 1995, 2(4): 152
doi: 10.1016/1065-7355(95)90016-0
[3] Zhang L, Zhao C Y, Wang Z Y, et al. Studies on corrosion behaviors of carbon steel and weathering steel in simulated industrial atmospheric environment [J]. Plating & Finishing, 2015, 37(4): 38
[3] (张琳, 赵春英, 王振尧等. 模拟工业大气环境中碳钢和耐候钢的腐蚀行为研究 [J]. 电镀与精饰, 2015, 37(4): 38)
[4] Zhang Y W, Guo T M, Song Z T, et al. Corrosion behavior of Q345q steel with oxide scale in simulated typical atmospheric environment in northwest China [J]. Chin. J. Mater. Res., 2019, 33(10): 749
doi: 10.11901/1005.3093.2019.088
[4] (张延文, 郭铁明, 宋志涛等. 带氧化皮Q345q钢在模拟西北典型大气环境中的腐蚀行为研究 [J]. 材料研究学报, 2019, 33(10): 749)
doi: 10.11901/1005.3093.2019.088
[5] Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 1
[5] (梁彩凤, 候文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25(1): 1)
[6] Pan X X, Jiang H C, Fu H, et al. Investigation on initial-stage corrosion behavior of low alloy high-strength weathering resistant steel in regional climates [J]. Corros. Sci. Prot. Technol., 2017, (04): 28
[6] (潘雪新, 姜海昌, 付鸿等. 区域性气候条件下低合金高强耐候钢的初期腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, (04): 28)
[7] Gao X L, Fu G Q, Zhu M Y, et al. Corrosion behavior of low-alloy weathering steel in environment containing chloride ions [J]. J. Univ. Sci. Technol. B., 2012, (11): 50
[7] (高新亮, 付贵勤, 朱苗勇等. 低合金耐候钢在含氯离子环境中的腐蚀行为 [J]. 北京科技大学学报, 2012, (11): 50)
[8] Lu W Y, Wang Z Y, Yu Q C, et al. Synergic effect of NaHSO3 and NaCl on atmospheric corrosion of Q235 steel [J]. Corros. Sci. Prot. Technol., 2015, (6): 545
[8] (吕旺燕, 王振尧, 于全成等. NaHSO3和NaCl对Q235钢大气腐蚀的协同作用 [J]. 腐蚀科学与防护技术, 2015, (6): 545)
doi: 10.11903/1002.6495.2015.008
[9] Han L H. Corrosion characteristic research of Q235 and B480GNQR steel in typical atmospheric environment [D]. Tianjin: Tianjin University, 2014
[9] (韩连恒. Q235和B480GNQR钢在典型大气环境中的腐蚀行为研究 [D]. 天津: 天津大学, 2014)
[10] Hara S, Miura M, Uchiumi Y, et al. Suppression of deicing salt corrosion of weathering steel bridges by washing [J]. Corros. Sci., 2005, 47(10): 0-2430
[11] Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39(4)
[11] (郭铁明, 张延文, 秦俊山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39(4))
[12] Díaz Ivan, Cano H, Fuente D D L, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76(2): 348
doi: 10.1016/j.corsci.2013.06.053
[13] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41(9): 1687
doi: 10.1016/S0010-938X(99)00005-0
[14] Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51(5): 0-1006
[15] Wu H Y, Zhang C Y, Wen L, et al. Study on corrosion behavior of V-Ti container weathering steel in a simulated industrial atmosphere environment [A]. Proceedings of the Second Conference on Development and Application of Vanadium Titanium Microalloyed High Strength Steel in 2015 [C]. Sichuan, 2015
[15] (吴红艳, 张程远, 翁镭等. V-Ti集装箱用耐候钢在模拟工业大气环境下耐蚀行为的研究 [A]. 2015第二届钒钛微合金化高强钢开发应用技术交流会会议论文集 [C]. 四川, 2015)
[16] Ke W, Dong J. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metallurgica Sinica, 2011, 46(11): 1365
doi: 10.3724/SP.J.1037.2010.01365
[17] Li Q X, Wang Z Y, Han W, et al. Review on atmospheric corrosion of weathering and carbon steels [J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 394
[17] (李巧霞, 王振尧, 韩薇等. 碳钢和耐候钢的大气腐蚀 [J]. 中国腐蚀与防护学报, 2009, 29(5): 394)
doi: 1005-4537(2009)05-0394-07
[18] Chuang Q, Lian F S, Long H, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
[19] Wu H Y, Du L X, Liu X H, et al. Corrosion behavior of Mn-Cu weathering steel in simulated industrial atmosphere environment [J]. J. Northeast. Univ., 2011, 32(10): 1418
[19] (吴红艳, 杜林秀, 刘相华等. Mn-Cu耐候钢在模拟工业大气环境下的腐蚀行为 [J]. 东北大学学报(自然科学版), 2011, 32(10): 1418)
[20] Long H, Zhang S, Dong J, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2012, 59(none): 0-276
[21] Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014
[21] (陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014)
[22] Yue L J, Wang L M, Pu X Y, et al. Electrochemical characteristics of rust layer on 10PCuRE weathering steel [J]. Chinese Rare Earths, 2005, 26(5): 56
[22] (岳丽杰, 王龙妹, 朴秀玉等. 10PCuRE耐候钢耐蚀锈层的电化学特征 [J]. 稀土, 2005, 26(5): 56)
[23] Jiang S, Chai F, Su H, et al. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution [J]. Corros. Sci., 2017, 123
[24] Hao X C, Su P, Xiao Q, et al. Influence of NaCl concentration on corrosion products of weathering steel [J]. Corros. Prot., 2009, 30(5): 297
[24] (郝献超, 苏鹏, 肖葵等. 不同NaCl浓度对耐候钢腐蚀产物的影响 [J]. 腐蚀与防护, 2009, 30(5): 297)
[25] Shao C J. The corrosion resistance of low carbon bainitic weathering steel in coastal atmosphere and industrial atmosphere [D]. Shenyang: Northeast University, 2010
[25] (邵长静. 低碳贝氏体耐候钢在海岸大气和工业大气环境下的腐蚀行为研究 [D]. 沈阳: 东北大学, 2010)
[26] Sun J L, Zou D, Jin J. et al. Localized corrosion resistance of three commonly-used stainless steels [J] Chin. J. Mater. Res.. 2017, 31(09): 665
[26] (孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J].材料研究学报, 2017, 31(09): 665)
[27] Asami K, Kikuchi M. In-Depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45(11): 2671
doi: 10.1016/S0010-938X(03)00070-2
[28] Chen W, Hao L, Dong J, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83(7): 155
doi: 10.1016/j.corsci.2014.02.010
[29] Nishimura T, Noda K, Kodama T, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion -Houston Tx-, 2000, 56(9): 935
[30] Qian A, Yang X H, Jin P, et al. Micro-zone electrochemical behavior of Aer Met100 steel in salt spray environment under Cl- [J]. Equipment Environmental Engineering, 2019, 10(16): 88
[30] (钱昂, 杨晓华, 金平等. Cl-作用下AerMet100钢在盐雾环境中的微区电化学行为 [J]. 装备环境工程, 2019, 10(16): 88)
[31] Wang Z, Liu J, Wu L, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67(none): 1
doi: 10.1016/j.corsci.2012.09.020
[32] Ohtsuka T, Komatsu T. Enhancement of electric conductivity of the rust layer by adsorption of water [J]. Corros. Sci., 2005, 47(10): 2571
doi: 10.1016/j.corsci.2004.10.010
[33] Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51(5): 0-1006
[34] Jia Z, Cuiwei D U, Liu Z, et al. Effect of calcium ions on CO2 corrosion of 3Cr low-alloy steel [J]. Acta Metallurgica Sinica, 2011, 24(5): 373
[35] Zhang B, Ma X L. TEM study on the pitting initiation [J]. Chinese Journal of material progress, 2018, 37(11): 30
[35] (张波, 马秀良. 点蚀形核机制的透射电子显微学研究 [J]. 中国材料进展, 2018, 37(11): 30)
[36] Chen W J, Chen Y Q, Pan G. Corrosion evolution characteristics of Q235B steel in an O3/Cl- containing atmosphere [J]. Corros. Sci. Prot. Technol., 2019, 31(01): 10
[36] (陈文娟, 陈翌庆, 潘刚. O3/Cl-复合大气环境中Q235B钢的腐蚀演化特性 [J]. 腐蚀科学与防护技术, 2019, 31(01): 10)
[37] Yan B H, Wang X J, Zhao N, et al. Corrosion behaviors of carbon steel and weathering steel in Nanjing industrial atmosphere [A]. The Fifth Marine Materials and Corrosion Protection Conference and New Marine Materials and Protection Technology Exhibition in 2018 [C], Beijing, 2018
[37] (闫秉昊, 王孝建, 赵楠等. 碳钢和耐候钢在南京工业大气环境中的腐蚀行为 [A]. 2018第五届海洋材料与腐蚀防护大会暨海洋新材料及防护新技术展览会 [C]. 北京, 2018)
[38] Wang J J, Guo X D, Zheng W L, et al. Analysis of the corrosion rust on weathering steel and carbon steel exposed in marine atmosphere for three years [J]. Corros. Prot., 2002, (07): 6
[38] (王建军, 郭小丹, 郑文龙等. 海洋大气暴露3年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, (07): 6)
[39] Li J Z. Reasearch on corrosion resistance and rust stability of uncoating weathering bridge steel [D]. Qinhuangdao: Tianjin University, 2016
[39] (历纪正. 免涂装耐候桥梁钢的耐蚀性能及锈层稳定性研究 [D]. 秦皇岛: 燕山大学, 2016)
[40] Cheng Q, Tao B, Song L, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil [J]. Corros. Sci., 2016: S0010938X16301962
[41] Yang Y, Hou H X, Zhang Z, et al. Corrosion behavior of weathering bridge steel Q500qENH in simulated industrial atmospheric environment [J]. Corros. Prot., 2017, 4
[41] (杨颖, 侯华兴, 张哲. Q500qENH耐候桥梁钢在模拟工业大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 4)
[42] Zhang Q C, Wang J J, Wu J S, et al. Effort of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, (02): 193
[42] (张全成, 王建军, 吴建生等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, (02): 193)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
[15] 尹奇,刘淼然,刘雨薇,潘晨,王振尧. MgCl2对锌在干湿交替环境中腐蚀行为的影响[J]. 材料研究学报, 2019, 33(9): 705-712.