Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 443-451    DOI: 10.11901/1005.3093.2019.489
  研究论文 本期目录 | 过刊浏览 |
一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为
朱金阳1(), 谭成通2, 暴飞虎1, 许立宁2
1.北京科技大学国家材料服役安全科学中心 北京 100083
2.北京科技大学新材料技术研究院 北京 100083
CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water
ZHU Jinyang1(), TAN Chengtong2, BAO Feihu1, XU Lining2
1.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
Jinyang ZHU, Chengtong TAN, Feihu BAO, Lining XU. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. Chinese Journal of Materials Research, 2020, 34(6): 443-451.

全文: PDF(5802 KB)   HTML
摘要: 

以自行设计开发的新型3Cr2Al低合金钢为研究对象,采用高温高压磁力驱动反应釜进行饱和CO2模拟油田采出液环境下的腐蚀模拟实验,通过失重法获取腐蚀速率评价其耐蚀性能,并结合扫描电子显微镜、能谱分析、电化学测试等表征手段,研究腐蚀产物膜结构及成分特征,探讨耐蚀机理。相比3Cr钢,3Cr2Al钢中少量Al的添加提高了材料的抗CO2腐蚀性能,在短周期(20 h)和长周期(144 h)条件下,其腐蚀速率分别下降15%和69%,这种耐蚀性能的提升主要是由于3Cr2Al钢表面产物膜中不仅有Cr的富集,同时还有Al的富集,提高了产物膜对基体的保护性。溶液中的氯离子对产物膜中Al的富集存在一定影响,在低氯溶液环境中,3Cr2Al钢表面腐蚀产物膜中Al/Fe原子比明显高于其Cr/Fe原子比,Al的富集更明显;当提高溶液氯离子浓度,腐蚀产物膜中Al/Fe原子比相比低氯溶液明显降低,Al的富集程度减弱,阳极极化曲线半钝化现象消失。

关键词 材料失效与保护低Cr合金钢CO2腐蚀元素富集半钝化    
Abstract

The corrosion behavior of a new developed 3Cr2Al steel in a simulated high-temperature and high-pressure oilfield formation water was studied by means of weight loss method and electrochemical technique, as well as scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) etc. Results show that compared with the plain 3Cr steel, the corrosion rate of 3Cr2Al steel decreases significantly. By short period (about 20 h) test and long period (about 144 h) test, the corrosion rate for 3Cr2Al decreases about 15% and 69%, respectively. The addition of a small amount of Al could improve the CO2 corrosion resistance of the 3Cr2Al steel to certain extent. This is mainly due to the fact that not only the Cr-, but also the Al-enrichment did emerge in the corrosion product on the steel surface, which thereby improves the protectiveness of the corrosion product scale. In the solution with lower Cl- concentration, the Al/Fe atomic ratio in the corrosion product is much higher than the Cr/Fe atomic ratio, namely, the enrichment of Al is more obvious. If the Cl- concentration in the solution increases, the Al/Fe atomic ratio in the corrosion product scale decreased significantly, the enrichment of Al is weakened, correspondingly, the semi-passivation disappeared.

Key wordsmaterials failure and protection    Cr-containing low alloy steel    CO2 corrosion    elemental enrichment    semi-passivation
收稿日期: 2019-10-22     
ZTFLH:  TG174.2  
基金资助:国家自然科学基金(51871025)
作者简介: 朱金阳,男,1988年生,副研究员
CCrAlMoSiMnNbFe
0.083.002.000.150.200.550.05Bal.
表1  实验用3Cr2Al钢的主要化学成分(%,质量分数)
CompositionNaClCaCl2KClMgCl·6H2ONaHCO3Na2SO4
Solution A024.88.69.56.21.4
Solution B432.824.88.69.56.21.4
表2  某油田采出液的模拟成分配比
图1  3Cr2Al的金相组织形貌
图2  3Cr2Al钢在腐蚀20 h和144 h时酸洗前和酸洗后的腐蚀形貌
图3  油田采出液饱和CO2环境下3Cr和3Cr2Al腐蚀速率对比
图4  3Cr2Al腐蚀产物膜表面微观形貌和EDS分析结果
图5  3Cr2Al钢腐蚀后的截面形貌图.
图6  3Cr2Al钢腐蚀产物膜截面拉曼图谱.
图7  3Cr2Al钢在A溶液中形成的腐蚀产物膜截面元素分布图
图8  3Cr2Al钢腐蚀产物膜中关键元素含量及富集情况对比
图9  3Cr2Al钢在B溶液中形成的腐蚀产物膜截面元素分布图
图10  两种不同溶液环境下3Cr2Al钢腐蚀产物膜中关键元素含量对比
图11  两种不同溶液环境下3Cr2Al钢的动电位极化曲线对比
[1] Ingham B, Ko M, Kear G, et al. In situ synchrotron X-ray diffraction study of surface scale formation during CO2 corrosion of carbon steel at temperatures up to 90 ℃ [J]. Corros. Sci., 2010, 52: 3052
doi: 10.1016/j.corsci.2010.05.025
[2] Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water [J]. Electrochim. Acta, 2011, 56: 1676
doi: 10.1016/j.electacta.2010.10.059
[3] Sun J B, Su X, Zhang Y. Effect of H2S/CO2 corrosion scales on the hydrogen permeation behavior of low chromium steels [J]. Surf. Technol., 2018, 47(6): 17
[3] (孙建波, 苏鑫, 张勇. 高温高压H2S/CO2腐蚀产物膜对低铬钢氢渗透行为的影响 [J]. 表面技术, 2018, 47(6): 17)
[4] Nice P I, Buene A M, Takabe H, et al. Corrosion problem and its countermeasure of 3Cr110 production tubing in NaCl completion brine on the statfjord field [A]. Corrosion 2006 [C]. Houston: NACE International, 2006
[5] Nice P I, Takabe H, Nice P I. The development and implementation of a new alloyed steel for oil and gas production wells [A]. Corrosion 2000 [C]. Houston: NACE International, 2000
[6] Cheng L, Yu W, Cai Q W. Influence of microbands refined microstructure and two phase microstructure on high temperature fracture behaviors of a low Cr alloy steel [J]. Chin. J. Mater. Res., 2020, 34 (1): 21
[6] (程磊, 余伟, 蔡庆伍. 显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响 [J]. 材料研究学报, 2020, 34 (1): 21)
[7] Ueda M, Takabe H. The formation behavior of corrosion protective films of low Cr bearing steels in CO2 environments [A]. Corrosion 2001 [C]. Houston: NACE International, 2001
[8] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
doi: 10.1016/S0010-938X(98)00104-8
[9] Chen C F, Liu M X, Zhao G X, et al. The ion passing selectivity of CO2 corrosion scale on N80 tube steel [A].Corrosion 2003 [C]. Houston: NACE International, 2003
[10] Zhu J Y, Xu L N, Lu M X, et al. Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO2 environments: prepassivation [J]. Corros. Sci., 2015, 93: 336
doi: 10.1016/j.corsci.2015.01.030
[11] Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
doi: 10.1016/j.corsci.2016.05.032
[12] Kermani M B, Gonzales J C, Linne C, et al. Development of low carbon Cr-Mo steels with exceptional corrosion resistance for oilfield applications [A]. Corrosion 2001 [C]. Houston: NACE International, 2001
[13] Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment [J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
[14] Ueda M, Takabe H, Nice P I. The development and implementation of a new alloyed steel for oil and gas production wells [A]. Corrosion 2000 [C]. Orlando: NACE International, 2000
[15] Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels [J]. Corros. Sci., 2004, 46: 1669
doi: 10.1016/j.corsci.2003.10.004
[16] Wang R, Luo S J, Liu M, et al. Electrochemical corrosion performance of Cr and Al alloy steels using a J55 carbon steel as base alloy [J]. Corros. Sci., 2014, 85: 270
doi: 10.1016/j.corsci.2014.04.023
[17] Li Y S, Spiegel M, Shimada S. Effect of Al/Si addition on KCl induced corrosion of 9% Cr steel [J]. Mater. Lett., 2004, 58: 3787
doi: 10.1016/j.matlet.2004.06.068
[18] ASTM G1-03 Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. West Conshohocken, PA: ASTM International, 2011
[19] Zhu J Y, Xu L N, Lu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO2-saturated oilfield formation waters [J]. Corrosion, 2015, 71: 854
doi: 10.5006/1494
[20] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds [M]. New York: Wiley, 1991
[21] Zhu J Y, Xu L N, Lu M X, et al. Interaction effect between Cr(OH)3 passive layer formation and inhibitor adsorption on 3Cr steel surface [J]. RSC Adv., 2015, 5: 18518
doi: 10.1039/C4RA15519J
[22] Rai D, Moore D A, Hess N J, et al. Chromium (III) hydroxide solubility in the aqueous Na+-OH--H2PO-4-HPO2-4-PO3-4-H2O system: A thermodynamic model [J]. J. Solut. Chem., 2004, 33: 1213
doi: 10.1007/s10953-004-7137-z
[23] Udea M, Ikeda A. Effect of microstructure and Cr content in steel on CO2 corrosion [A]. Corrosion 1996 [C]. Houston: NACE International, 1996
[24] Papassiopi N, Vaxevanidou K, Christou C, et al. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides [J]. J. Hazard. Mater., 2014, 264: 490
doi: 10.1016/j.jhazmat.2013.09.058
[25] Roberson C E, Hem J D. Solubility of aluminum in the presence of hydroxide, fluoride, and sulfate [P]. U S Geol Surv Water-Supply Paper, 1969
[26] Hem J D, Roberson C E. Form and stability of aluminum hydroxide complexes in dilute solution [P]. US Geol. Survey Water Supply Paper. Washington DC: US Government Printing Office, 1967
[27] Sun Z, Zhang D H, Yan B X, et al. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution [J]. Opt. Laser Technol., 2018, 99: 282
doi: 10.1016/j.optlastec.2017.09.013
[28] Da Silva F S, Bedoya J, Dosta S, et al. Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel [J]. Corros. Sci., 2017, 114: 57
doi: 10.1016/j.corsci.2016.10.019
[29] Li S X, Khan H A, Hihara L H, et al. Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment [J]. Corros. Sci., 2018, 132: 300
doi: 10.1016/j.corsci.2018.01.005
[30] Sherif E S M, Almajid A A, Latif F H, et al. Effects of graphite on the corrosion behavior of Aluminum-graphite composite in sodium chloride solutions [J]. Int. J. Electrochem. Sci., 2011, 6: 1085
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
[15] 尹奇,刘淼然,刘雨薇,潘晨,王振尧. MgCl2对锌在干湿交替环境中腐蚀行为的影响[J]. 材料研究学报, 2019, 33(9): 705-712.