|
|
Q235/Ni-Co基自修复涂层的制备和耐蚀性能 |
段体岗1( ), 黄国胜1, 马力1, 彭文山1, 张伟2, 许立坤1, 林志峰1, 何华3, 毕铁满3 |
1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237 2.烟台市公共就业和人才服务中心 烟台 264003 3.大连船舶重工集团有限公司 大连 116001 |
|
Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel |
DUAN Tigang1( ), HUANG Guosheng1, MA Li1, PENG Wenshan1, ZHANG Wei2, XU Likun1, LIN Zhifeng1, HE Hua3, BI Tieman3 |
1. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China 2. Center of Public Employment and Talent Service of Yantai, Yantai 264003, China 3. Dalian Shipbuilding Industry Co. , LTD, Dalian 116001, China |
引用本文:
段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
Tigang DUAN,
Guosheng HUANG,
Li MA,
Wenshan PENG,
Wei ZHANG,
Likun XU,
Zhifeng LIN,
Hua HE,
Tieman BI.
Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. Chinese Journal of Materials Research, 2020, 34(10): 777-783.
[1] |
Han E, Chen J, Su Y, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend[J]. Mater. Chin., 2014, (33): 65
|
[1] |
韩恩厚, 陈建敏, 宿彦京等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, (33): 65
|
[2] |
Sander G, Tan J, Balan P, et al. Corrosion of additively manufactured alloys: a review. Corros., 2018, 74(12): 1318
|
[3] |
Lin J, Li W, Che K, et al. Research progress in marine engineering of anticorrosive coatings [J]. Mod Paint Finishing, 2018, 21(9): 7
|
[3] |
林静, 李文婷, 车凯圆等. 防腐涂层在海洋工程中的研究进展 [J]. 现代涂料与涂装, 2018, 21(9): 7
|
[4] |
Shi H, Liu F, Wang Z, et al. Research progress of corrosion-resisting paints for marine application [J]. Corros. Sci. Pro. Technol., 2010, 22(1): 43
|
[4] |
史洪微, 刘福春, 王震宇等. 海洋防腐涂料的研究进展 [J]. 腐蚀科学与防护技术, 2010, 22(1): 43
|
[5] |
Pourhashem S, Ghasemy E, Rashidi A, et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings [J]. J. Coat. Technol. Res., 2020, 17(1): 19
|
[6] |
Gao S, Liu M, Pang X, et al. Fabrication and properties of super-hydrophobic composite coatings [J]. Chin. J. Mater. Res., 2018, 32(7): 502
|
[6] |
高硕洪, 刘敏, 庞晓军等. 超疏水复合涂层的制备和性能研究 [J]. 材料研究学报, 2018, 32(7): 502
|
[7] |
Guo Q, Chen H. The protective mechanism and evaluating methods of anticorrosion coatings [J]. Synthetic. Mater. Aging. Appl., 2003, 32(04): 36
|
[7] |
郭清泉, 陈焕钦. 金属腐蚀与涂层防护 [J]. 合成材料老化与应用, 2003, 32(04): 36
|
[8] |
Lv P, Li H, Huang W. New progress of the research on organic protective coatings [J]. Mater. Rev., 2011, 25(13): 83
|
[8] |
吕平, 李华灵, 黄微波. 有机防护涂层老化研究进展 [J]. 材料导报, 2011, 25(13): 83
|
[9] |
Li H, Cui Y, Wang Q, et al. Advances in self-healing coating materials [J]. Polymer Mater. Sci. Eng., 2016, 32(10): 177
|
[9] |
李海燕, 崔业翔, 王晴等. 自修复涂层材料研究进展 [J]. 高分子材料科学与工程, 2016, 32(10): 177
|
[10] |
Pan M, Wang L, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. Chin., 2018, 37(1): 19
|
[10] |
潘梦秋, 王伦滔, 丁璇等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37(1): 19
|
[11] |
Zhang Y, Fan W, Zhang T, et al. Review of intelligent self-healing coatings [J]. Chin. J. Corros. Pro., 2019, 39(4): 299
|
[11] |
张勇, 樊伟杰, 张泰峰等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39(4): 299
|
[12] |
An S, Lee W M, Yarin A, et al. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks [J]. Chem. Eng. J., 2018, 344: 206
|
[13] |
Leal D A, Riegel-Vidotti I C, Ferreira M G S, et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection [J]. Corros. Sci., 2018, 130: 56
|
[14] |
Wang X, Jin T, Wang H, et al. Preparation and properties of poly (urea-formaldehyde) microcapsules containing polysulfide sealant [J]. Chin. J. Mater. Res., 2018, 32(10): 730
|
[14] |
王璇, 金涛, 王浩伟等. 脲醛树脂包覆聚硫密封剂微胶囊的制备和性能 [J]. 材料研究学报, 2018, 32(10): 730
|
[15] |
Hughes A E, Cole I S, Muster T H, et al. Designing green, self-healing coatings for metal protection [J]. NPG Asia Mater., 2010, 2(4): 143
|
[16] |
Yabuki A, Sakai M. Self-healing coatings of inorganic particles using a pH-sensitive organic agent [J]. Corros. Sci., 2011, 53(2): 829
|
[17] |
Wang X, Zhang X, Li F, et al. Research progress on self-healing anticorrosion coating [J]. J. Funct. Mater., 2012, 43(19): 2584
|
[17] |
王晓岗, 张星, 李原芃等. 自修复功能防腐涂膜研究进展 [J]. 功能材料, 2012, 43(19): 2584
|
[18] |
Shi X, Song Y, Cai Z, et al. The influence of microcapsules with a partially filled structure on the damping properties of an epoxy resin [J]. New J. Chem., 2018, 42(14): 12119
|
[19] |
Zhou X, Li W, Zhu L, et al. Polymer–silica hybrid self-healing nano/microcapsules with enhanced thermal and mechanical stability [J]. RSC Adv., 2019, 9(4): 1782
|
[20] |
Wazarkar K, Patil D, Rane A V, et al. Microencapsulation: an emerging technique in modern coating industry [J]. RSC Adv., 2016, 6(108): 106964
|
[21] |
Hia I L, Chan E-S, Chai S-P, et al. A novel repeated self-healing epoxy composite with alginate multicore microcapsules [J]. J. Mater. Chem. A, 2018, 6(18): 8470
|
[22] |
Lang S, Zhou Q. Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development [J]. Prog. Org. Coat., 2017, 105: 99
|
[23] |
Huang M, Yang J. Facile microencapsulation of HDI for self-healing anticorrosion coatings [J]. J. Mater. Chem., 2011, 21(30): 11123
|
[24] |
Qiao L, Xue Y, Zhang Q. Synthesis and characterization of phenol-formaldehyde microcapsules for self-healing coatings [J]. J. Mater Sci, 2018, 53(2): 1035
|
[25] |
Li K, Li H, Cui Y, et al. Dual-functional coatings with self-lubricating and self-healing properties by combining poly(urea-formaldehyde)/SiO2 hybrid microcapsules containing linseed oil [J]. Ind. Eng. Chem. Res., 2019, 58(48): 22032
doi: 10.1021/acs.iecr.9b04736
|
[26] |
Díez-García I, Eceiza A, Tercjak A. Self-healable nanocomposites with enhanced thermal stability by incorporation of TiO2 nanoparticles to waterborne poly(urethane-urea) matrices based on amphiphilic triblock copolymers [J]. J. Phys. Chem. C, 2019, 123(34): 21290
doi: 10.1021/acs.jpcc.9b06184
|
[27] |
Shchukina E, Wang H, Shchukin D G. Nanocontainer-based self-healing coatings: current progress and future perspectives [J]. Chem. Comm., 2019, 55(27): 3859
doi: 10.1039/c8cc09982k
pmid: 30895976
|
[28] |
Snihrova D, Lamaka S V, Montemor M F. "SMART" protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates [J]. Electrochim. Acta, 2012, 83: 439
|
[29] |
Ma X, Xu L, Wang W, et al. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy [J]. Corros. Sci., 2017, 120: 139
|
[30] |
Lamaka S V, Zheludkevich M L, Yasakau K A, et al. High effective organic corrosion inhibitors for 2024 aluminum alloy [J]. Electrochim. Acta, 2007, 52(25): 7231
|
[31] |
Yu S, Jia R, Zhang H, et al. Effect of (Gd, Y) containing-phases on local corrosion of aged GW103K alloy [J]. Chin. J. Mater. Res., 2019, 33(3): 199
|
[31] |
于爽, 贾瑞灵, 张函等. (Gd, Y)相对GW103K时效合金局部腐蚀的影响 [J]. 材料研究学报, 2019, 33(3): 199
|
[32] |
Lee S J, Hong A, Kim I H, et al. Surface potential measurements of a polymer film following primary ion gun irradiation for ToF-SIMS analysis of insulator using a Kelvin probe and the observation of effects from the vacuum gauge [J]. Appl. Surf. Sci., 2020, 525: 146561
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|