Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 777-783    DOI: 10.11901/1005.3093.2020.134
  研究论文 本期目录 | 过刊浏览 |
Q235/Ni-Co基自修复涂层的制备和耐蚀性能
段体岗1(), 黄国胜1, 马力1, 彭文山1, 张伟2, 许立坤1, 林志峰1, 何华3, 毕铁满3
1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
2.烟台市公共就业和人才服务中心 烟台 264003
3.大连船舶重工集团有限公司 大连 116001
Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel
DUAN Tigang1(), HUANG Guosheng1, MA Li1, PENG Wenshan1, ZHANG Wei2, XU Likun1, LIN Zhifeng1, HE Hua3, BI Tieman3
1. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2. Center of Public Employment and Talent Service of Yantai, Yantai 264003, China
3. Dalian Shipbuilding Industry Co. , LTD, Dalian 116001, China
引用本文:

段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.
Tigang DUAN, Guosheng HUANG, Li MA, Wenshan PENG, Wei ZHANG, Likun XU, Zhifeng LIN, Hua HE, Tieman BI. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. Chinese Journal of Materials Research, 2020, 34(10): 777-783.

全文: PDF(10178 KB)   HTML
摘要: 

结合自修复微胶囊防腐涂层与合金镀层的优点,在Q235碳钢基体制备Ni-Co/Cap(T+Y)复合涂层以提高碳钢材料的耐侯性和服役周期。首先采用恒电流合金电镀法在Q235碳钢基体生成Ni-Co合金镀层,然后将以桐油和金属缓蚀剂做囊芯的双组份自修复胶囊均匀分散在醇酸树脂防腐涂层中制备有机防腐涂层,得到Ni-Co/Cap(T+Y)复合涂层。SEM观测和热重分析结果表明,合成的双组份自修复微胶囊的平均粒径约为3 μm,囊芯包覆率达到49%。中性盐雾试验和微区电化学测试结果表明,经历380 h中性盐雾试验后复合防腐涂层只在划痕交点处出现轻微腐蚀,其他部位仍旧完整,没有出现鼓泡和腐蚀。以Ni-Co合金镀层与自修复涂层相结合的复合涂层,能长期保护Q235碳钢。

关键词 材料失效与保护自修复涂层微胶囊Ni-Co合金电镀    
Abstract

Combining the advantages of organic coating with self-healing ability and alloy plating, a composite coating Cap(T+Y)/ Ni-Co was prepared on the Q235 substrate in order to improve the anti-corrosion ability and extend the service time of the coated steel. At first the Ni-Co alloy plating was electro-deposited on Q235 carbon steel, and subsequently, the two-component microcapsules containing organic coating was applied on the Ni-Co/Q235 to acquire a composite coating. Results of SEM observation and thermogravimetry analysis show that the diameter of microcapsules is about 3 μm with a coverage up to 49%. Besides, results of neutral salt spray tests and localized electrochemical tests show that the composite coating presents a well integrality after undergoing 380 h salt spray test. The anticorrosive composite coating has satisfactory self-healing activity and long-term protectiveness on the Q235 metal matrixes.

Key wordsmaterial failure and protection    self-healing coating    microcapsule    Ni-Co alloy plating
收稿日期: 2020-04-23     
ZTFLH:  O648  
图1  Cap(T+Y)双组分自修复微胶囊的SEM照片
图2  氮气气中的质量损失与温度的关系以及 UF、T、Y和Cap(T+Y)的DTG曲线
图3  Ni-Co合金镀层、有划痕的N-C-SR和完整N-C-SR的盐雾照片
图4  N-C-SR自修复过程的微区电化学测试结果
图5  N-C-SR的自修复机理模型
[1] Han E, Chen J, Su Y, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend[J]. Mater. Chin., 2014, (33): 65
[1] 韩恩厚, 陈建敏, 宿彦京等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, (33): 65
[2] Sander G, Tan J, Balan P, et al. Corrosion of additively manufactured alloys: a review. Corros., 2018, 74(12): 1318
[3] Lin J, Li W, Che K, et al. Research progress in marine engineering of anticorrosive coatings [J]. Mod Paint Finishing, 2018, 21(9): 7
[3] 林静, 李文婷, 车凯圆等. 防腐涂层在海洋工程中的研究进展 [J]. 现代涂料与涂装, 2018, 21(9): 7
[4] Shi H, Liu F, Wang Z, et al. Research progress of corrosion-resisting paints for marine application [J]. Corros. Sci. Pro. Technol., 2010, 22(1): 43
[4] 史洪微, 刘福春, 王震宇等. 海洋防腐涂料的研究进展 [J]. 腐蚀科学与防护技术, 2010, 22(1): 43
[5] Pourhashem S, Ghasemy E, Rashidi A, et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings [J]. J. Coat. Technol. Res., 2020, 17(1): 19
[6] Gao S, Liu M, Pang X, et al. Fabrication and properties of super-hydrophobic composite coatings [J]. Chin. J. Mater. Res., 2018, 32(7): 502
[6] 高硕洪, 刘敏, 庞晓军等. 超疏水复合涂层的制备和性能研究 [J]. 材料研究学报, 2018, 32(7): 502
[7] Guo Q, Chen H. The protective mechanism and evaluating methods of anticorrosion coatings [J]. Synthetic. Mater. Aging. Appl., 2003, 32(04): 36
[7] 郭清泉, 陈焕钦. 金属腐蚀与涂层防护 [J]. 合成材料老化与应用, 2003, 32(04): 36
[8] Lv P, Li H, Huang W. New progress of the research on organic protective coatings [J]. Mater. Rev., 2011, 25(13): 83
[8] 吕平, 李华灵, 黄微波. 有机防护涂层老化研究进展 [J]. 材料导报, 2011, 25(13): 83
[9] Li H, Cui Y, Wang Q, et al. Advances in self-healing coating materials [J]. Polymer Mater. Sci. Eng., 2016, 32(10): 177
[9] 李海燕, 崔业翔, 王晴等. 自修复涂层材料研究进展 [J]. 高分子材料科学与工程, 2016, 32(10): 177
[10] Pan M, Wang L, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. Chin., 2018, 37(1): 19
[10] 潘梦秋, 王伦滔, 丁璇等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37(1): 19
[11] Zhang Y, Fan W, Zhang T, et al. Review of intelligent self-healing coatings [J]. Chin. J. Corros. Pro., 2019, 39(4): 299
[11] 张勇, 樊伟杰, 张泰峰等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39(4): 299
[12] An S, Lee W M, Yarin A, et al. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks [J]. Chem. Eng. J., 2018, 344: 206
[13] Leal D A, Riegel-Vidotti I C, Ferreira M G S, et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection [J]. Corros. Sci., 2018, 130: 56
[14] Wang X, Jin T, Wang H, et al. Preparation and properties of poly (urea-formaldehyde) microcapsules containing polysulfide sealant [J]. Chin. J. Mater. Res., 2018, 32(10): 730
[14] 王璇, 金涛, 王浩伟等. 脲醛树脂包覆聚硫密封剂微胶囊的制备和性能 [J]. 材料研究学报, 2018, 32(10): 730
[15] Hughes A E, Cole I S, Muster T H, et al. Designing green, self-healing coatings for metal protection [J]. NPG Asia Mater., 2010, 2(4): 143
[16] Yabuki A, Sakai M. Self-healing coatings of inorganic particles using a pH-sensitive organic agent [J]. Corros. Sci., 2011, 53(2): 829
[17] Wang X, Zhang X, Li F, et al. Research progress on self-healing anticorrosion coating [J]. J. Funct. Mater., 2012, 43(19): 2584
[17] 王晓岗, 张星, 李原芃等. 自修复功能防腐涂膜研究进展 [J]. 功能材料, 2012, 43(19): 2584
[18] Shi X, Song Y, Cai Z, et al. The influence of microcapsules with a partially filled structure on the damping properties of an epoxy resin [J]. New J. Chem., 2018, 42(14): 12119
[19] Zhou X, Li W, Zhu L, et al. Polymer–silica hybrid self-healing nano/microcapsules with enhanced thermal and mechanical stability [J]. RSC Adv., 2019, 9(4): 1782
[20] Wazarkar K, Patil D, Rane A V, et al. Microencapsulation: an emerging technique in modern coating industry [J]. RSC Adv., 2016, 6(108): 106964
[21] Hia I L, Chan E-S, Chai S-P, et al. A novel repeated self-healing epoxy composite with alginate multicore microcapsules [J]. J. Mater. Chem. A, 2018, 6(18): 8470
[22] Lang S, Zhou Q. Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development [J]. Prog. Org. Coat., 2017, 105: 99
[23] Huang M, Yang J. Facile microencapsulation of HDI for self-healing anticorrosion coatings [J]. J. Mater. Chem., 2011, 21(30): 11123
[24] Qiao L, Xue Y, Zhang Q. Synthesis and characterization of phenol-formaldehyde microcapsules for self-healing coatings [J]. J. Mater Sci, 2018, 53(2): 1035
[25] Li K, Li H, Cui Y, et al. Dual-functional coatings with self-lubricating and self-healing properties by combining poly(urea-formaldehyde)/SiO2 hybrid microcapsules containing linseed oil [J]. Ind. Eng. Chem. Res., 2019, 58(48): 22032
doi: 10.1021/acs.iecr.9b04736
[26] Díez-García I, Eceiza A, Tercjak A. Self-healable nanocomposites with enhanced thermal stability by incorporation of TiO2 nanoparticles to waterborne poly(urethane-urea) matrices based on amphiphilic triblock copolymers [J]. J. Phys. Chem. C, 2019, 123(34): 21290
doi: 10.1021/acs.jpcc.9b06184
[27] Shchukina E, Wang H, Shchukin D G. Nanocontainer-based self-healing coatings: current progress and future perspectives [J]. Chem. Comm., 2019, 55(27): 3859
doi: 10.1039/c8cc09982k pmid: 30895976
[28] Snihrova D, Lamaka S V, Montemor M F. "SMART" protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates [J]. Electrochim. Acta, 2012, 83: 439
[29] Ma X, Xu L, Wang W, et al. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy [J]. Corros. Sci., 2017, 120: 139
[30] Lamaka S V, Zheludkevich M L, Yasakau K A, et al. High effective organic corrosion inhibitors for 2024 aluminum alloy [J]. Electrochim. Acta, 2007, 52(25): 7231
[31] Yu S, Jia R, Zhang H, et al. Effect of (Gd, Y) containing-phases on local corrosion of aged GW103K alloy [J]. Chin. J. Mater. Res., 2019, 33(3): 199
[31] 于爽, 贾瑞灵, 张函等. (Gd, Y)相对GW103K时效合金局部腐蚀的影响 [J]. 材料研究学报, 2019, 33(3): 199
[32] Lee S J, Hong A, Kim I H, et al. Surface potential measurements of a polymer film following primary ion gun irradiation for ToF-SIMS analysis of insulator using a Kelvin probe and the observation of effects from the vacuum gauge [J]. Appl. Surf. Sci., 2020, 525: 146561
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 商百慧,马元泰,孟美江,李瑛. 混凝土养护期间HRB400钢筋钝化行为研究[J]. 材料研究学报, 2019, 33(9): 659-665.