Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 933-944    DOI: 10.11901/1005.3093.2021.556
  研究论文 本期目录 | 过刊浏览 |
含磷石墨烯的制备及复合涂层的耐蚀性能
李玉峰1,2(), 张念飞1, 刘丽爽1, 赵甜甜1, 高文博1, 高晓辉1
1.齐齐哈尔大学化学与化学工程学院 齐齐哈尔 161006
2.齐齐哈尔大学轻工与纺织学院 齐齐哈尔 161006
Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating
LI Yufeng1,2(), ZHANG Nianfei1, LIU Lishuang1, ZHAO Tiantian1, GAO Wenbo1, GAO Xiaohui1
1.College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
2.College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
引用本文:

李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
Yufeng LI, Nianfei ZHANG, Lishuang LIU, Tiantian ZHAO, Wenbo GAO, Xiaohui GAO. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. Chinese Journal of Materials Research, 2022, 36(12): 933-944.

全文: PDF(31236 KB)   HTML
摘要: 

以植酸(PhA)为原料,采用热解法制备含磷石墨烯(PhA-G),并以硅树脂(SiR)为成膜物制备含磷石墨烯/硅树脂(PhA-G/SiR)复合防腐蚀涂层。通过拉曼光谱和XPS分析含磷石墨烯的结构,通过SEM、TEM和AFM观察含磷石墨烯的形貌,通过接触角、吸水率、电化学阻抗谱、极化曲线和盐雾实验等研究复合涂层的耐蚀性能。结果表明:相比于纯SiR涂层和氧化石墨烯/硅树脂(GO/SiR)复合涂层,PhA-G/SiR复合涂层对金属的保护作用更好;当含磷石墨烯添加量为3%(质量分数)时,PhA-G/SiR复合涂层表现出较好的疏水性和优异的防腐蚀性能,其接触角为103.5°,吸水率为3.72%;腐蚀电流密度为3.53×10-10 A/cm2,电化学阻抗值达到3.82×107 Ω·cm2,耐盐雾达到960 h。

关键词 材料失效与保护耐蚀性能含磷石墨烯硅树脂复合涂层    
Abstract

The phosphorus-containing graphene (PhA-G) was prepared by pyrolysis method with phytic acid (PhA) as raw material, and next the PhA-G/SiR composite anticorrosion coating was prepared with silicone resin (SiR) as film forming material. The structure and morphology of phosphorus-containing graphene was characterized by means of Raman spectroscope, X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM). The prepared coatings with the different additive amount of PhA-G (1%~4% in mass fraction), were comparatively examined by means of measurements of contact angle, water absorption, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), as well as salt spray test. The results show that the protectiveness of PhA-G/SiR composite coatings for metal substrate is greater than that of the plain SiR coating, and graphene oxide/silicone resin (GO/SiR) coating. The PhA-G/SiR composite coating exhibits good hydrophobicity and excellent corrosion resistance when the mass fraction of PhA-G is 3%. Correspondingly, which exhibits hydrophobic contact angle of 103.5° and water absorption rate of 3.72%, while corrosion current density of 3.53×10-10 A/cm2 and electrochemical impedance as high as 3.82×107 Ω·cm2 in 3.5%(mass fraction) NaCl solution. Furthermore, the PhA-G/SiR composite coating presents excellent resistance to salt spray testing, up to above 960 h.

Key wordsmaterials failure and protection    corrosion resistance    phosphorus-containing graphene    silicone resin    composite coating
收稿日期: 2021-09-26     
ZTFLH:  TB304  
基金资助:黑龙江省省属高等学校基本科研业务费科研项目(135509128)
作者简介: 李玉峰,男,1970年生,教授
图1  GO和PhA-G的拉曼光谱图
图2  GO和PhA-G的XPS谱图
图3  GO和PhA-G的SEM图
图4  GO和PhA-G的TEM图像
图5  PhA-G样品的AFM图像及厚度分析
图6  不同PhA-G含量的PhA-G/SiR复合涂层的表面形貌照片
图7  PhA-G含量对复合涂层接触角和吸水率的影响
图8  SiR涂层、GO/SiR涂层和4种PhA-G/SiR复合涂层在3.5% NaCl溶液中浸泡不同时间的Nyquist和Bode图
图9  裸钢、SiR涂层、GO/SiR涂层和4种PhA-G/SiR复合涂层的极化曲线
SampleIcorr / A·cm-2E / VbabcCR / mm·a-1Rp / Ω·cm2PE / %
Bare steel1.66×10-5-0.8913.590.8241.28×10-11.75×104-
SiR2.95×10-7-0.1713.080.4132.28×10-35.36×10598.21
GO/SiR1.76×10-7-0.1202.920.6451.36×10-31.31×10698.93
1%PhA-G/SiR4.78×10-8-0.2421.951.1503.69×10-46.58×10699.71
2%PhA-G/SiR2.45×10-8-0.3062.420.8321.89×10-41.10×10799.85
3%PhA-G/SiR3.53×10-10-0.1180.770.3272.73×10-62.82×10899.99
4%PhA-G/SiR3.58×10-9-0.2521.102.0602.76×10-58.71×10799.97
表1  极化曲线拟合数据
图10  不同涂层经不同时间的盐雾实验后以及去掉涂层后钢片表面的宏观形貌照片
图11  盐雾实验960 h后去掉涂层后钢基体表面的显微形貌照片
图12  PhA-G/SiR复合涂层防腐蚀机理示意图
1 BERRY V. Impermeability of graphene and its applications [J]. Carbon, 2013, 62: 1
doi: 10.1016/j.carbon.2013.05.052
2 Qi K, Sun Y M, Duan H W, et al. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite [J]. Corros. Sci., 2015, 98: 500
doi: 10.1016/j.corsci.2015.05.056
3 Wang N, Chen J S, Wang S W, et al. Application of aminated grap-hite oxide for waterborne anti-corrosion and fireproof coatings [J]. Chin. J. Mater. Res., 2018, 32(10): 721
3 王 娜, 陈俊声, 王树伟 等. 氨基化氧化石墨烯在水性防腐防火一体化涂料中的应用 [J]. 材料研究学报, 2018, 32(10): 721
4 Palaniappan N, Cole I, Kuznetsov A E. Experimental and computational studies of graphene oxide covalently functionalized by octylamine: electrochemical stability, hydrogen evolution, and corrosion inhibition of the AZ13 Mg alloy in 3.5%NaCl [J]. RSC Adv., 2020, 10(19): 11426
doi: 10.1039/c9ra10702a pmid: 35495345
5 Wen S, Ma J. Synergistic effect of polyvinylpyrrolidone noncovalently modified graphene and epoxy resin in anticorrosion application [J]. High. Perform. Polym., 2020, 33(2): 146
doi: 10.1177/0954008320942293
6 Ning L, Wang D D, Wang L, et al. Interesting corrosion inhibition performance and mechanism of two silanes containing multiple phosphate group [J]. Silicon-Neth., 2019, 12(6): 1455
7 Hermas A A, Wahdan M H, Ahmed E M. Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel [J]. Anti-Corros. Method. M, 2020, 64(5): 491
8 Zhu K, Li J Y, Fei G Q. Anticorrosive performance of phosphorylated graphene oxide applied at waterborne epoxy coating [J]. China Adhes., 2018, 27(9): 501
8 朱 科, 李菁熠, 费贵强. 磷酸化氧化石墨烯对水性环氧涂料防腐增强作用研究 [J]. 中国胶粘剂, 2018, 27(9): 501
9 Huang H, Tian Y, Xie Y, et al. Modification of graphene oxide with acrylate phosphorus monomer via thiol-Michael addition click reaction to enhance the anti-corrosive performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2020, 146: 105724
10 Ding J, Rahman O U, Peng W, et al. A novel hydroxyl epoxy phosp hate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings [J]. Appl. Surf. Sci., 2018, 427: 981
doi: 10.1016/j.apsusc.2017.08.224
11 Albero J, Vidal A, Migani A, et al. Phosphorus-doped graphene as a metal-free material for thermochemical water reforming at unusually mild conditions [J]. Acs. Sustain. Chem. Eng., 2019, 7(1): 838
doi: 10.1021/acssuschemeng.8b04462
12 Suleiman R, Estaitie M, Mizanurahman M. Hybrid organosiloxane coatings containing epoxide precursors for protecting mild steel against corrosion in a saline medium [J]. J. Appl. Polym. Sci., 2016, 133(38): 1
13 Zhang L, Shi Z, Hu W H, et al. Curing mechanism, heat resistance, and anticorrosion properties of a furan/methyl phenyl silicone coating [J]. Polym. Advan. Technol., 2018, 29(7): 1913
doi: 10.1002/pat.4300
14 Wu J X, Xu H, Zhang J. Raman spectroscopy of graphene [J]. Atca. Chim. Sin. 2014, 72(3): 301
14 吴娟霞, 徐 华, 张 锦. 拉曼光谱在石墨烯结构表征中的应用 [J]. 化学学报, 2014, 72(3): 301
doi: 10.6023/A13090936
15 Wang C, Jia Y J, Liu Z C, et al. Preparation and characterization of phosphorus-doped graphene [J]. Ind. Catal., 2014, 22(7): 510
15 王 灿, 贾银娟, 刘志成 等. 磷掺杂石墨烯的制备与表征 [J]. 工业催化, 2014, 22(7): 510
16 Yuan B H, Xing W Y, Hu Y X, et al. Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide [J]. Carbon., 2016, 101: 152
doi: 10.1016/j.carbon.2016.01.080
17 Shen X Y, Li X D, Zhao F H, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application [J]. 2D Mater., 2019, 6(3): 035020
18 Balaji S S, Ganesh P A, Moorthy M, et al. Efficient electrocatalytic activity for oxygen reduction reaction by phosphorus-doped graphene using supercritical fluid processing [J]. B. Mater. Sci., 2020, 43: 151
doi: 10.1007/s12034-020-02142-2
19 Yu Y, Zhang Q, Wu L, et al. Reaction mechanism of N-(4-hydroxyphenyl)ethanamide electrodegradation via phosphorus-graphene prepared from triphenylphosphine: Generation and destruction of the reactive species [J]. Chem. Eng. J., 2021, 403: 126322
doi: 10.1016/j.cej.2020.126322
20 Kong S, Hu W J, Li J S. Tribological properties of graphene in PAO base oil [J]. China Surf. Eng., 2019, 32(3): 162
20 孔 尚, 胡文敬, 李久盛. 石墨烯在PAO基础油中的摩擦学性能 [J]. 中国表面工程, 2019, 32(3): 162
21 Li Y, Xu Y, Wang S, et al. Preparation of graphene/polyaniline nanocomposite by in situ intercalation polymerization and their application in anti-corrosion coatings [J]. High Perform. Polym., 2019, 31(9-10): 1226
doi: 10.1177/0954008319839442
22 Pourhashem S, Vaezi M R, Rashidi A, et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings [J]. Prog. Org. Coat., 2017, 111: 47
23 Li Y F, Li J Y, Gao X H, et al. Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy [J]. Appl. Surf. Sci., 2018, 462(1): 362
doi: 10.1016/j.apsusc.2018.08.118
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.