Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 7-16    DOI: 10.11901/1005.3093.2020.154
  研究论文 本期目录 | 过刊浏览 |
超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能
张大磊(), 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃
中国石油大学(华东)材料科学与工程学院 青岛 266580
Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance
ZHANG Dalei(), WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
Dalei ZHANG, Enze WEI, He JING, Liuyang YANG, Xiaohui DOU, Tongyue LI. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. Chinese Journal of Materials Research, 2021, 35(1): 7-16.

全文: PDF(19613 KB)   HTML
摘要: 

将多巴胺的自发聚合反应与低表面能物质ODA和PFDT结合,在超级铁素体不锈钢表面制备了均匀致密的超疏水薄膜。用水雾凝聚实验、扫描电子显微镜(SEM)和X射线能谱分析(EDS)等手段表征了涂层修饰前后的润湿性、表面形貌以及化学结构,并使用三电极体系电化学工作站测试了超级铁素体不锈钢表面修饰前后涂层的阻抗谱和极化曲线。结果表明:修饰前超级铁素体不锈钢涂层表现为亲水性,修饰后表面有超疏水薄膜的超级铁素体不锈钢具有更低的腐蚀电流密度和更高的涂层电阻,修饰处理能明显提高超级铁素体不锈钢涂层的防腐蚀性。在涂层表面形成的超疏水膜具有“微纳米结构空气谷”,阻碍了强腐蚀性氯离子在溶液与固体界面间的扩散和迁移界面电化学反应腐蚀产物的脱落与溶解,提高了电荷转移电阻,降低了电流腐蚀密度,从而提高了涂层的防腐蚀性。

关键词 材料失效与保护超疏水薄膜多巴胺自聚合超级铁素体不锈钢腐蚀行为    
Abstract

A uniform and dense superhydrophobic film on the surface of super ferritic stainless steel B44660 was prepared via spontaneous polymerization of dopamine in the presence of low surface energy substances ODA and PFDT. Then the wettability, surface morphology and chemical structure of the steel with simple- and modified-dopamine coatings were characterized by means of water spray condensation experiment, scanning electron microscope (SEM), X-ray energy spectrum analysis (EDS), impedance spectroscopy and polarization curve tests. The results show that the super ferritic stainless steel with simple dopamine coating is hydrophilic, and however the super ferritic stainless steel surface with super hydrophobic coating has lower corrosion current density and higher coating resistance, the modification treatment can obviously improve the corrosion resistance of the simple dopamine coating on super ferritic stainless steel surface. The super-hydrophobic film formed on the surface of the simple dopamine coating presents large amount of "micro-nano structured air valleys", which prevents the diffusion of strongly corrosive chloride ions between the solution and the solid interface and the electrochemical reaction of the interface. Therefore, the corrosion current density is reduced, correspondingly improving the corrosion resistance of the coating.

Key wordsmaterials failure and protection    super hydrophobic film    dopamine self-polymerization    super ferritic stainless steel    corrosion behavior
收稿日期: 2020-05-08     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(51774314);山东省自然科学基金(ZR2018MEM002);中央高校自主创新科研计划项目(19CX05001A)
作者简介: 张大磊,男,1983年生,讲师
SteelCSiMnCrMoNiSPNTi+Nb
SFSS≤0.03≤1.0≤1.025.0~28.03.0~4.01.0~3.5≤0.04≤0.03≤0.046*(C+N)~1.0
表1  SFSS的化学成分组成
SampleSpecificationSource
Dopamine hydrochloride (DA)98%Aladdin Reagent Co., Ltd.
Tris (hydroxymethyl) aminomethane>99.9%Aladdin Reagent Co., Ltd.
Octadecylamine (ODA)90%Aladdin Reagent Co., Ltd.
1H, 1H, 2H, 2H-Perfluorodecyl mercaptan (PFDT)97%Aladdin Reagent Co., Ltd.
NaCl>99.5%Sinopharm Group Chemical Reagent Co., Ltd.
HClPremium gradeSinopharm Group Chemical Reagent Co., Ltd.
表2  主要实验试剂
GroupB1B2B3B4
Average roughness/μm4.27±0.0252.86±0.0130.98±0.0230.23±0.018
表3  修饰前B44660试样的平均粗糙度
图1  SFSS/PDA/PFDT和SFSS/PDA/ODA的制备过程示意图
图2  SFSS/PDA/ODA和SFSS/PDA/PFDT表面的宏观形貌
图3  SFSS/PDA/ODA和SFSS/PDA/PFDT的SEM和EDS分析
图4  B1-B4组不同粗糙度SFSS/PDA/ODA和SFSS/PDA/PFDT的平均水接触角
图5  修饰前不同时间段SFSS-B44660 (a, b, c)和SFSS/PDA/PFDT(d, e, f)表面在体式显微镜下的水雾凝聚状态
图6  修饰前的超铁B44660和SFSS/PDA/PFDT在荧光显微镜下微生物附着图
图7  修饰前SFSS B44660,SFSS/PDA/ODA和SFSS/PDA/PFDT在3.5%NaCl水溶液中的极化曲线
Sampleba /mVbc /mVI0 /A·cm-2E0 /VCorrosion rate/(mm/a)
SFSS326.42-255.757.4701×10-7-0.177730.0087039
SFSS/PDA/ODA380.96-188.111.5006×10-7-0.0315780.0017538
SFSS/PDA/PFDT317.56-66.8189.987×10-8-0.0981340.0007163
表4  修饰前超铁B44660和修饰后的SFSS/PDA/ODA、SFSS/PDA/PFDT在3.5%NaCl水溶液中的电化学拟合参数
图8  修饰前超铁B44660和修饰后SFSS/PDA/ODA和SFSS/PDA/PFDT浸泡在3.5%NaCl水溶液中的电化学阻抗谱图
图9  等效电路图:(a)修饰前超铁B44660; (b) SFSS/PDA/PFDT和SFSS/PDA/ODA
SampleRs /Ω·cm2CPE1/F·cm-2Rt /Ω·cm2CPE2/F·cm-2Rp /Ω·cm2
SFSS13.862.267×10-53.779×104
SFSS/PDA/ODA17.361.997×10-510843.739×10-59.265×104
SFSS/PDA/PFDT63.441.092×10-644101.541×10-51.175×105
表5  修饰前超铁B44660,SFSS/PDA/ODA 和SFSS/PDA/PFDT浸泡在3.5%NaCl水溶液中的阻抗谱拟合参数
图10  普通浸泡实验前后试样表面的微观形貌
图11  SFSS涂层腐蚀机理示意图
1 Tian Y, Li T B. Study on corrosion resistance of super ferritic stainless steel S44660 welded pipe [J]. China's Steel Industry, 2010(12): 29
1 田野, 李天宝. 超级铁素体不锈钢S44660焊管耐蚀性能的研究 [J]. 中国钢铁业, 2010(12):29
2 Jin C J. Research on corrosion resistance enhancement of AISI430 ferritic stainless steel by laser shock peening [D]. Zhenjiang: Jiangsu University, 2020
2 金成嘉. 激光冲击强化AISI430铁素体不锈钢抗腐蚀性能研究 [D]. 镇江: 江苏大学, 2020
3 Ma L, Hu S, Shen J, et al. Effects of Cr content on the microstructure and properties of 26Cr-3.5Mo-2Ni and 29Cr-3.5Mo-2Ni super ferritic stainless steels [J]. Journal of Materials Science & Technology, 2016, 32(6): 552
4 Ouyang M H, Liu H A, Ye J X, et al. Study on corrosion electrochemical behavior of super ferrite stainless steel 447 in concentrated sulfuric acid [J]. China Stainless, 2017, 000(001): 28
4 欧阳明辉, 刘焕安, 叶际宣. 超级铁素体不锈钢447在浓硫酸中的腐蚀电化学行为的研究 [J]. 不锈钢, 2017, 000(001): 28
5 Cao C N. Natural Environmental Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005
5 曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
6 Schino A D. Corrosion behaviour of AISI 460LI super-ferritic stainless steel [J]. Acta Metallurgica Slovaca, 2019, 25(4): 217
7 Guo X, Xu S, Zhao L, et al. One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties [J]. Langmuir, 2009, 25(17): 9894
8 Song J X. Study on corrosion resistance of super ferrite stainless steel U-tube in sea water [A]. Proceedings of Power Plant Chemistry 2009 Annual Conference and China Power Plant Chemical Network 2009 Summit Forum Conference [C]. Wuhan, 2009
8 宋敬霞. 超级铁素体不锈钢海优管在海水中的耐腐蚀性研究 [A]. 电厂化学2009学术年会暨中国电厂化网2009高峰论坛会议论文集 [C]. 武汉, 2009
9 Dowling N J E, Kim J N, Kim H J E, et al. Corrosion and toughness of experimental and commercial super ferritic stainless steels [J]. Corrosion Houston Tx, 1999, 55(8): 743
10 Yuan J L, Li H Z, Li T B. Development of S44660 ferritic stainless steel welded pipe for seawater condenser [J]. China Stainless, 2011, 000(004): 31
10 原军亮, 李怀洲, 李天宝. 海水冷凝器用S44660铁素体不锈钢焊管的发展 [J]. 不锈钢, 2011, 000(004): 31
11 Wang Y F, Shi P. Research on corrosion characteristics of ferritic stainless steel in condensate of exhaust system [J]. Hot Working Technology, 2019, (16): 37
11 王银凤, 石平. 铁素体不锈钢在排气系统冷凝液中的腐蚀特性研究 [J]. 热加工工艺, 2019, (16): 37
12 Zhang L, Wang W X, Yan Z F, et al. Corrosion performance of 00Cr16Sn ultra-pure ferritic stainless steel welded joints [J]. Transactions of the China Welding Institution., 2015, 036(008): 109
12 张蕾, 王文先, 闫志峰等. 00Cr16Sn超纯铁素体不锈钢焊接接头腐蚀性能 [J]. 焊接学报, 2015, 036(008): 109
13 Fan Y, Hong C, Huo Y S. Corrosion resistance research on A-TIG welded joint of 444 ultra-pure ferrite stainless steel [J]. Modern Manufacturing Technology and Equipment., 2018, 000(005): 23
13 范宇, 洪 昌, 霍玉双. 444超纯铁素体不锈钢A-TIG焊接头腐蚀性能的研究 [J]. 现代制造技术与装备, 2018, 000(005): 23
14 Ren J H, Chen A Z, Li Z G, et al. Corrosion resistance evaluation of 439 ultra-pure ferritic stainless steel [J]. China Metallurgy., 2018, 28(3): 35
14 任娟红, 陈安忠, 李照国等. 439超纯铁素体不锈钢耐蚀性评价 [J]. 中国冶金., 2018, 28(3): 35
15 Schino A D. Corrosion behaviour of AISI 460LI super-ferritic stainless steel [J]. Acta Metallurgica Slovaca, 2019, 25(4): 217
16 Jie H, Xu Q, Wei L, et al. Etching and heating treatment combined approach for superhydrophobic surface on brass substrates and the consequent corrosion resistance [J]. Corrosion Science, 2016, 102(1): 251
17 Zhang B, Zhao X, Li Y, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Advances, 2016, 6(42): 35455
18 Sun X D, Liu G, Li L Y, et al. Preparation and properties of superhydrophobizted sprayed Zn-Al coating [J]. Chin. J. Mater. Res., 2015, 29(7): 523
18 孙小东, 刘刚, 李龙阳等. 热喷涂锌铝合金超疏水涂层的制备及性能 [J]. 材料研究学报, 2015, 29(7): 523
19 Wang F, Zhou B Y, Feng W, et al. Preparation and condensation behavior of wear resistant Al-based superhydrophobic materials [J]. Chin. J. Mater. Res., 2020, 34(4): 277
19 王芳, 周宝玉, 冯伟等. 耐磨铝基超疏水材料的制备及其动态冷凝行为 [J]. 材料研究学报, 2020, 34(4): 277
20 Han X X, Yu S R, Li H, et al. Preparation and properties of CuO superhydrophobic coating on X90 pipeline steel [J]. Chin. J. Mater. Res., 2017, (09): 34:40
20 韩祥祥, 于思荣, 李好等. X90管线钢表面CuO超疏水涂层的制备和性能 [J]. 材料研究学报, 2017, (09): 34:40
21 Liu T. Fabrication of super-hydrophobic surfaces on metallic substrates and research on anti-corrosion and anti-biofilm properties [D]. Qingdao: Ocean University of China, 2009
21 刘涛. 金属基体超疏水表面的制备及其海洋防腐防污功能的研究 [D]. 青岛: 中国海洋大学, 2009
22 Ji W G, Hu J M, Liu L, et al. Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers [J]. Surface and Coatings Technology, 2007, 201(8): 4789
23 Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate-cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. Mater. Res., 2018, 032(011): 801
23 翁天宇, 赖德林, 李晓聪等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 032(011): 801: 810
24 Yao J P, Lei S, Wang F J, et al. Fabrication and corrosion resistance performance of superhydrophobic cuprous oxide surface [J]. Chin. J. Mater. Res., 2013, 027(006): 647
24 尧军平, 雷胜, 王法军等. 超疏水氧化亚铜表面的制备和耐腐蚀性能 [J]. 材料研究学报, 2013, 027(006): 647:651
25 Wang J, Chen X, Kang Y, et al. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films [J]. Applied Surface Science, 2010, 257(5): 1473
26 Zhang Z, Chen Y, Gu Q, et al. Preparation and corrosion resistance of 304 super-hydrophobic stainless-steel surface [J]. Iop Conference, 2019, 493
27 Wang Y, Tang Y, Xie C S, et al. The applications of the electrochemical impedance spectroscopy in the materials researches [J]. Materials Review, 2011, (13): 9
27 王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用 [J]. 材料导报, 2011, (13): 9
28 Zyilmaz A T, Erbil M, Yazici B. Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy [J]. Progress in Organic Coatings, 2004, 51(1): 47
29 Haoxiang M A, Hua L, Enshuang Z, et al. Preparation of bonded super-hydrophobic thin film [J]. Chemical Journal of Chinese Universities, 2019, 40(3): 560
30 Gao J Z, Zhao J L, Guo H, et al. Fabrication of superhydrophobic surface through a solution-immersion process on zinc substrate [J]. Journal of Northwest Normal University (Natural Science), 2012, 048(003): 65
30 高锦章, 赵菊玲, 郭昊等. 溶液浸泡法制备超疏水锌表面 [J]. 西北师范大学学报: 自然科学版, 2012, 048(003): 65
[1] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.