Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 705-712    DOI: 10.11901/1005.3093.2019.188
  研究论文 本期目录 | 过刊浏览 |
MgCl2对锌在干湿交替环境中腐蚀行为的影响
尹奇1,2,刘淼然1,3,刘雨薇1,潘晨1(),王振尧1()
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
3. 中国科学院大学 北京 100049
Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test
YIN Qi1,2,LIU Miaoran1,3,LIU Yuwei1,PAN Chen1(),WANG Zhenyao1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

尹奇,刘淼然,刘雨薇,潘晨,王振尧. MgCl2对锌在干湿交替环境中腐蚀行为的影响[J]. 材料研究学报, 2019, 33(9): 705-712.
Qi YIN, Miaoran LIU, Yuwei LIU, Chen PAN, Zhenyao WANG. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. Chinese Journal of Materials Research, 2019, 33(9): 705-712.

全文: PDF(8248 KB)   HTML
摘要: 

使用腐蚀失重、X射线衍射(XRD)、扫描电子显微镜与能谱(SEM-EDS)等手段研究了干湿交替环境中MgCl2对锌腐蚀行为的影响。结果表明,MgCl2对锌的腐蚀有显著的抑制作用;在沉积NaCl条件下锌表面的腐蚀产物为Zn5(OH)8Cl2·H2O、Zn4CO3(OH)6·H2O和Zn(OH)2,而在沉积MgCl2条件下锌表面的腐蚀产物只有Zn5(OH)8Cl2·H2O。在干湿交替环境中MgCl2对锌腐蚀行为的影响主要是Mg2+与氧还原反应产生的OH-结合使阴极区的pH值降低造成的。

关键词 材料失效与保护大气腐蚀机制室内模拟加速腐蚀实验MgCl2    
Abstract

The effect of MgCl2- and NaCl-deposit on simulated atmospheric corrosion of Zn was comparatively investigated via wet-dry alternating corrosion test, as well as mass loss, X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS). The results show that the corrosion rate of Zn was significantly inhibited by the deposition of MgCl2; the corrosion products formed on Zn plate with NaCl deposit were Zn5(OH)8Cl2·H2O、Zn4CO3(OH)6·H2O and Zn(OH)2, while was only Zn5(OH)8Cl2·H2O for Zn plate with MgCl2 deposit. It was proposed that the corrosion may be caused by the decrease of pH, which was induced by the precipitation of Mg2+ ions and OH- ions, in the cathodic sites.

Key wordsmaterials failure and protection    atmospheric corrosion mechanism    laboratory simulated corrosion test    MgCl2    zinc
收稿日期: 2019-04-09     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51671197);中国科学院专项(XDA130040502)
作者简介: 尹 奇,男,1991年生,博士生
ElementFeCuPbSnCaZn
Composition/%0.0120.00050.0400.00050.0005Balance
表1  实验中纯锌试样的成分(质量分数)
图1  沉积不同盐的锌腐蚀528 h后的腐蚀失厚
图2  锌腐蚀528 h后腐蚀产物的XRD谱
Deposited saltsCorrosion products
Na1

Zn5(OH)8Cl2·H2O

Zn4CO3(OH)6·H2O

Zn(OH)2

Mg1Zn5(OH)8Cl2·H2O
Mg2Zn5(OH)8Cl2·H2O
表2  锌腐蚀528h后蚀产物的XRD检测结果
图3  锌腐蚀528 h后表面的SEM-EDS结果
图4  锌腐蚀528 h后的截面SEM-EDS结果
图5  锌试样表面去除腐蚀产物后的SEM照片
图6  锌的2价腐蚀产物在浓度为4 mol·L-1的Cl-离子溶液中腐蚀产物的优势区
图7  腐蚀后锌试样浸泡液的pH值
Formulalg K0*
H2O ? OH-+H+-14
CO2+H2O ? H2CO3-1.468
CO2+H2O ? HCO3-+H+-7.82
CO2+H2O ? CO32-+2H+-18.149
Zn2++2CO2+2H2O ? Zn(CO3)22-+4H+-26.668
Zn2++CO2+H2O ? ZnCO3(s)+2H+-12.849
Zn2++CO2+H2O ? ZnHCO3++H+-5.72
5Zn2++2CO2+8H2O ? Zn5(OH)6(CO3)2(s)+10H+-45.988
Zn2++H2O ? ZnOH++H+-8.96
Zn2++2H2O ? Zn(OH)2(s)+2H+-16.9
Zn2++3H2O ? Zn(OH)3-+3H+-28.4
Zn2++4H2O ? Zn(OH)42-+4H+-41.2
Zn2++6H2O ? Zn(OH)64-+6H+-57.8
2Zn2++H2O ? Zn2OH3++H+-9.0
Zn2++H2O ? ZnO(s)+2H+-11.14
Zn2++2H2O ? α-Zn(OH)2(s)+2H+-12.45
Zn2++2H2O ? ε-Zn(OH)2(s)+2H+-11.5
Zn2++Cl- ? ZnCl+0.43
Zn2++2Cl- ? ZnCl20.45
Zn2++3Cl- ? ZnCl3-0.5
Zn2++4Cl- ? ZnCl42-0.2
Zn2++Cl-+H2O ? ZnClOH+H+-7.48
5Zn2++2Cl-+9H2O ? Zn5(OH)8Cl2·H2O(s)+9H+-38.5
表3  离子强度为0、温度为25℃时各反应式及其相应的平衡常数[18]
图8  XRD谱中锌腐蚀产物Zn5(OH)8Cl2·H2O峰的偏移
Group

Zn5(OH)8Cl2·H2O

Main peak (2θ)

Zn

Main peak (2θ)

Na11.2343.27
Mg1, Mg211.0843.23
PDF card11.2343.23
表4  不同组中腐蚀产物Zn5(OH)8Cl2·H2O的主峰位置与基体Zn主峰位置
1 ZhangX G. Corrosion of zinc and its alloy [J]. Corros. Pro., 2006, 27(01): 41
1 章小鸽. 锌和锌合金的腐蚀 [J]. 腐蚀与防护, 2006, 27(01): 41
2 ChenZ Y, PerssonD, LeygrafC. Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2 [J]. Corros. Sci., 2008, 50(1): 111
3 ColeI S. Recent progress and required developments in atmospheric corrosion of galvanised steel and zinc [J]. Materials, 2017, 10(11): 1288
4 GraedelT E. Corrosion mechanism for zinc exposed to the atmosphere [J]. J. Electrochem. Soc., 1989, 136(4): C193
5 LiuY W, WangZ Y, CaoG W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment [J]. Mater. Chem. Phys., 2017, 198:243
6 NeufeldA K, ColeI S, BondA M, et al. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J]. Corros. Sci., 2002, 44(3): 555
7 WallinderI O, LeygrafC. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73(9): 1060
8 ProsekT, ThierryD, TaxenC, et al. Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions [J]. Corros. Sci., 2007, 49(6): 2676
9 ShiY Y, ZhangZ, ZhangJ Q, et al. Review of atmospheric corrosion of zinc and zinc alloy [J]. J. Chin. Soc. Corros. Prot., 2005, 25(06): 373
9 施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状 [J]. 中国腐蚀与防护学报, 2005, 25(06): 373)
10 PanC, HanW, WangZ Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25(12): 5382
11 HaoX H, WangZ Y, WangC. Atmospheric corrosion of zinc at Hongyanhe nuclear power station [J]. Equipm. Environ. Eng., 2012, 9(3): 108
11 郝显赫, 王振尧, 汪川. 锌在辽宁红沿河核电站的大气腐蚀研究 [J]. 装备环境工程, 2012, 9(03): 108)
12 WangZ Y, YuG C, HanW. Atmospheric corrosion performance of zinc at several selected test sites in China [J]. Corros. Sci. Prot. Technol., 2003, 15(04): 191
12 王振尧, 于国才, 韩 薇. 我国若干典型大气环境中的锌腐蚀 [J]. 腐蚀科学与防护技术, 2003, 15(04): 191)
13 WangZ Y, YuG C, ZhengY P, et al. Investigation on interrelation of accelerated corrosion testing and atmospheric exposure of zinc [J]. J. Chin. Soc. Corros. Pro., 1999, 19(04): 48
13 王振尧, 于国才, 郑逸苹等. 锌的加速腐蚀与大气暴露腐蚀的相关性研究 [J]. 中国腐蚀与防护学报, 1999, 19(04): 48)
14 WangJ, WangZ Y, KeW. A study of the evolution of rust on weathering steel submitted to the Qinghai salt lake atmospheric corrosion [J]. Mater. Chem. Phys., 2013, 139(1): 225
15 WangB B, WangZ Y, HanW, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in western China [J]. Corros. Sci., 2012, 59: 63
16 ZhangD, WangZ Y, ZhouY Z, et al. Initial corrosion behavior of galvanized steel in atmosphere by Qinghai Salt Lake [J]. Chin. J. Mater. Res., 2018, 32(04): 255
16 张 丹, 王振尧, 周永璋等. 镀锌钢在青海盐湖大气环境下的初期腐蚀行为研究 [J]. 材料研究学报, 2018, 32(04): 255)
17 YinQ, WangZ Y, PanC. Initial corrosion behavior of pure zinc in simulated tropical marine atmosphere [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(12): 2582
18 LindstromR, SvenssonJ E, JohanssonL G. The influence of salt deposits on the atmospheric corrosion of zinc - The important role of the sodium ion [J]. J. Electrochem. Soc., 2002, 149(2): B57
19 FalkT, SvenssonJ E, JohanssonL G. The influence of CO2 and NaCl on the atmospheric corrosion of zinc - A laboratory study [J]. J. Electrochem. Soc., 1998, 145(9): 2993
20 LindstromR, SvenssonJ E, JohanssonL G. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2000, 147(5): 1751
21 TsutsumiY, NishikataA, TsuruT. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49(3): 1394
22 HoskingN C, StromM A, ShipwayP H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49(9): 3669
[1] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 彭浩平, 席世亨, 崔德荣, 刘亚, 邓嵩, 苏旭平, 阮睿文. Mn对熔融Zn-Mn合金与X80钢润湿行为的影响[J]. 材料研究学报, 2021, 35(10): 785-794.
[9] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.