Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 713-720    DOI: 10.11901/1005.3093.2018.711
  研究论文 本期目录 | 过刊浏览 |
高温水蒸汽对CO2电化学传感器性能的影响
王光伟1,2(),陈鸿珍2,李友凤1,谢波1,江忠远1
1. 遵义师范学院化学化工学院 遵义 563006
2. 中国科学院水库水环境重点实验室 中国科学院重庆绿色智能技术研究院 重庆 400714
Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor
WANG Guangwei1,2(),CHEN Hongzhen2,LI Youfeng1,XIE Bo1,JIANG Zhongyuan1
1. Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China
2. Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology (CIGIT), Chinese Academy of Sciences, Chongqing 400714, China
引用本文:

王光伟,陈鸿珍,李友凤,谢波,江忠远. 高温水蒸汽对CO2电化学传感器性能的影响[J]. 材料研究学报, 2019, 33(9): 713-720.
Guangwei WANG, Hongzhen CHEN, Youfeng LI, Bo XIE, Zhongyuan JIANG. Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor[J]. Chinese Journal of Materials Research, 2019, 33(9): 713-720.

全文: PDF(4622 KB)   HTML
摘要: 

使用锂钡掺杂氧化碳酸盐作为敏感电极材料制备YSZCO2电化学传感器,研究了高温水蒸汽对传感器性能的影响。结果表明,经300℃高温水蒸汽处理(24~120 h)后,传感器对CO2浓度的变化(271~576802 μL/L)仍然表现出准确的响应特性,电子转移数接近理论值2;未经高温水蒸汽处理和经高温水蒸汽处理120 h的传感器,均表现出较低的氧含量依赖特性,在不同的氧含量条件下传感器对CO2浓度突变的响应电动势相同。这种传感器不但能在含有一定比例水蒸汽的环境中长时间工作,而且在经过一定程度的高温水蒸汽累积作用后其性能没有明显的劣化。

关键词 无机非金属材料掺杂氧化碳酸盐水蒸汽YSZCO2传感器    
Abstract

Carbon dioxide electrochemical sensor was prepared with Li and Ba co-doped oxycarbonate as auxiliary sensing electrode and YSZ as electrolyte, then the influence of high temperature water vapor on the performance of the sensor was investigated. The results show that the potentiometric sensor respond correctly and rapidly to the change of CO2 concentration (271~576802 μL/L) after pretreatment in water vapor (300℃) for 24~120 h. The number of transfer electrons of the electrode reactions were approximately 2. Low oxygen dependency was found for the sensors, whether they were pretreated or not in water vapor for 120 h, all responded rapidly and accordingly for different oxygen content. The sensor worked not only in water vapor for relatively long term, but also after the constantly water vapor treatment to some extent.

Key wordsinorganic non-metallic materials    dope    oxycarbonate    water vapor    YSZ    CO2 sensor
收稿日期: 2018-12-16     
ZTFLH:  TQ174.7  
基金资助:国家自然科学基金(41763008);贵州省基础研究计划(重点)(2019-1461);贵州省科技支撑计划(2018-2774);贵州省普通高等学校科技拔尖人才支持计划(2017-086);遵义师范学院博士启动基金(BS2017-02);重庆市前沿与应用基础研究项目(cstc2015jcyjA20008)
作者简介: 王光伟,男,1979年生,博士,副研究员
图1  CO2传感器的结构示意图
SensorTemperature/℃Time/h
Entry 13000
Entry 230024
Entry 330048
Entry 430072
Entry 530096
Entry 6300120
表1  传感器的高温水蒸汽处理
图2  敏感电极的X射线衍射谱图
图3  敏感电极表面的扫描电镜照片
图4  CO2浓度连续变化时传感器的响应
图5  CO2浓度连续变化时传感器的响应
Entry 1Entry 2Entry 3Entry 4Entry 5Entry 6
CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2
n2.032.012.061.982.021.942.021.982.052.082.071.95
E/mV70.6871.3869.6572.4671.0373.9671.1372.2669.9968.9869.3173.58
表2  CO2浓度连续变化时传感器的电子转移数n和电动势变化率△E
Entry 1Entry 2Entry 3Entry 4Entry 5Entry 6
CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2
n2.052.022.041.982.061.992.031.962.082.002.061.97
E/mV69.9871.0570.3372.4869.7072.1070.6673.2168.9571.7269.6872.82
表3  CO2浓度连续变化(271→576802→271 μL/L)时传感器的电子转移数n及电动势变化率△E
图6  传感器的稳定性
图7  传感器在水蒸汽存在条件下的响应
图8  传感器在水蒸汽存在条件下的长时间稳定性
1 MiuraN, YanY T, NonakaS, et al. Sensing properties and mechanism of a planar carbon dioxide sensor using magnesia-stabilized zirconia and lithium carbonate auxiliary phase [J]. J. Mater. Chem., 1995, 5: 1391
2 FergusJ W. A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors [J]. Sensor. Actuat., 2008, 134B: 1034
3 SchwandtC, KumarR V, HillsM P. Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide [J]. Sensor. Actuat., 2018, 265B: 27
4 OkamotoT, ShimamotoY, TsumuraN, et al. Drift phenomena of electrochemical CO2 sensor with Pt, Na2CO3/Na+-electrolyte//YSZ/Pt structure [J]. Sensor. Actuat., 2005, 108B: 346
5 BeldaC, FritschM, FellerC, et al. Stability of solid electrolyte based thick-film CO2 sensors [J]. Microelectron. Reliab., 2009, 49: 614
6 N?feH, AldingerF. CO2 sensor based on a solid state oxygen concentration cell [J]. Sensor. Actuat., 2000, 69B: 46
7 MorioM, HyodoT, ShimizuY, et al. Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors [J]. Sensor. Actuat., 2009, 139B: 563
8 SadaokaY. Nasicon based CO2 gas sensor with an auxiliary electrode composed of LiCO3-metal oxide mixtures [J]. Sensor. Actuat., 2007, 121B: 194
9 LeeI, AkbarS A. Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode [J]. Ionics, 2014, 20: 563
10 ImanakaN, KamikawaM, TamuraS, et al. Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes [J]. Sensor. Actuat., 2001, 77B: 301
11 ImanakaN, KamikawaM, TamuraS, et al. Carbon dioxide gas sensing with the combination of trivalent Sc3+ ion conducting Sc2(WO4)3 and O2- ion conducting stabilized zirconia solid electrolytes [J]. Solid State Ionics, 2000, 133: 279
12 PasierbP, KomornickiS, GajerskiR, et al. The performance and long-time stability of potentiometric CO2 gas sensors based on the (Li-Ba)CO3/NASICON/(Na-Ti-O) electrochemical cells [J]. Solid State Ionics, 2003, 157: 357
13 LeeJ S, LeeJ H, HongS H. Nasicon-based amperometric CO2 sensor using Na2CO3-BaCO3 auxiliary phase [J]. Sensor. Actuat., 2003, 96B: 663
14 YamauchiM, ItagakiY, AonoH, et al. Reactivity and stability of rare earth oxide-Li2CO3 mixtures [J]. J. Eur. Ceram. Soc., 2008, 28: 27
15 ImanakaN, OguraA, KamikawaM, et al. CO2 gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode [J]. Electrochem. Commun., 2001, 3: 451
16 ImanakaN, KamikawaM, AdachiG Y. A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode [J]. Anal. Chem., 2002, 74: 4800
17 DingK, SeyfriedW E Jr. Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400℃ and 40 megapascals [J]. Science, 1996, 272: 1634
18 DingK, SeyfriedW E Jr, TiveyM K, et al. In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge [J]. Earth Planet. Sci. Lett., 2001, 186: 417
19 DingK, SeyfriedW E. In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures [J]. Chem. Rev., 2007, 107: 601
20 SakaiN, YamajiK, HoritaT, et al. Effect of water on electrochemical oxygen reduction at the interface between fluorite-type oxide-ion conductors and various types of electrodes [J]. Solid State Ionics, 2004, 174: 103
21 MénilF, DaddahB O, TardyP, et al. Planar LISICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties [J]. Sensor. Actuat., 2005, 107B: 695
22 LeeI, AkbarS A, DuttaP K. High temperature potentiometric carbon dioxide sensor with minimal interference to humidity [J]. Sensor. Actuat., 2009, 142B: 337
23 TamuraS, HasegawaI, ImanakaN, et al. Carbon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonate based auxiliary electrode [J]. Sensor. Actuat., 2005, 108B: 359
24 AonoH, ItagakiY, SadaokaY. Na3Zr2Si2PO12-based CO2 gas sensor with heat-treated mixture of Li2CO3 and Nd2O3 as an auxiliary electrode [J]. Sensor. Actuat., 2007, 126B: 406
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.