|
|
高温水蒸汽对CO2电化学传感器性能的影响 |
王光伟1,2( ),陈鸿珍2,李友凤1,谢波1,江忠远1 |
1. 遵义师范学院化学化工学院 遵义 563006 2. 中国科学院水库水环境重点实验室 中国科学院重庆绿色智能技术研究院 重庆 400714 |
|
Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor |
WANG Guangwei1,2( ),CHEN Hongzhen2,LI Youfeng1,XIE Bo1,JIANG Zhongyuan1 |
1. Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China 2. Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology (CIGIT), Chinese Academy of Sciences, Chongqing 400714, China |
引用本文:
王光伟,陈鸿珍,李友凤,谢波,江忠远. 高温水蒸汽对CO2电化学传感器性能的影响[J]. 材料研究学报, 2019, 33(9): 713-720.
Guangwei WANG,
Hongzhen CHEN,
Youfeng LI,
Bo XIE,
Zhongyuan JIANG.
Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor[J]. Chinese Journal of Materials Research, 2019, 33(9): 713-720.
1 | MiuraN, YanY T, NonakaS, et al. Sensing properties and mechanism of a planar carbon dioxide sensor using magnesia-stabilized zirconia and lithium carbonate auxiliary phase [J]. J. Mater. Chem., 1995, 5: 1391 | 2 | FergusJ W. A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors [J]. Sensor. Actuat., 2008, 134B: 1034 | 3 | SchwandtC, KumarR V, HillsM P. Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide [J]. Sensor. Actuat., 2018, 265B: 27 | 4 | OkamotoT, ShimamotoY, TsumuraN, et al. Drift phenomena of electrochemical CO2 sensor with Pt, Na2CO3/Na+-electrolyte//YSZ/Pt structure [J]. Sensor. Actuat., 2005, 108B: 346 | 5 | BeldaC, FritschM, FellerC, et al. Stability of solid electrolyte based thick-film CO2 sensors [J]. Microelectron. Reliab., 2009, 49: 614 | 6 | N?feH, AldingerF. CO2 sensor based on a solid state oxygen concentration cell [J]. Sensor. Actuat., 2000, 69B: 46 | 7 | MorioM, HyodoT, ShimizuY, et al. Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors [J]. Sensor. Actuat., 2009, 139B: 563 | 8 | SadaokaY. Nasicon based CO2 gas sensor with an auxiliary electrode composed of LiCO3-metal oxide mixtures [J]. Sensor. Actuat., 2007, 121B: 194 | 9 | LeeI, AkbarS A. Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode [J]. Ionics, 2014, 20: 563 | 10 | ImanakaN, KamikawaM, TamuraS, et al. Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes [J]. Sensor. Actuat., 2001, 77B: 301 | 11 | ImanakaN, KamikawaM, TamuraS, et al. Carbon dioxide gas sensing with the combination of trivalent Sc3+ ion conducting Sc2(WO4)3 and O2- ion conducting stabilized zirconia solid electrolytes [J]. Solid State Ionics, 2000, 133: 279 | 12 | PasierbP, KomornickiS, GajerskiR, et al. The performance and long-time stability of potentiometric CO2 gas sensors based on the (Li-Ba)CO3/NASICON/(Na-Ti-O) electrochemical cells [J]. Solid State Ionics, 2003, 157: 357 | 13 | LeeJ S, LeeJ H, HongS H. Nasicon-based amperometric CO2 sensor using Na2CO3-BaCO3 auxiliary phase [J]. Sensor. Actuat., 2003, 96B: 663 | 14 | YamauchiM, ItagakiY, AonoH, et al. Reactivity and stability of rare earth oxide-Li2CO3 mixtures [J]. J. Eur. Ceram. Soc., 2008, 28: 27 | 15 | ImanakaN, OguraA, KamikawaM, et al. CO2 gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode [J]. Electrochem. Commun., 2001, 3: 451 | 16 | ImanakaN, KamikawaM, AdachiG Y. A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode [J]. Anal. Chem., 2002, 74: 4800 | 17 | DingK, SeyfriedW E Jr. Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400℃ and 40 megapascals [J]. Science, 1996, 272: 1634 | 18 | DingK, SeyfriedW E Jr, TiveyM K, et al. In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge [J]. Earth Planet. Sci. Lett., 2001, 186: 417 | 19 | DingK, SeyfriedW E. In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures [J]. Chem. Rev., 2007, 107: 601 | 20 | SakaiN, YamajiK, HoritaT, et al. Effect of water on electrochemical oxygen reduction at the interface between fluorite-type oxide-ion conductors and various types of electrodes [J]. Solid State Ionics, 2004, 174: 103 | 21 | MénilF, DaddahB O, TardyP, et al. Planar LISICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties [J]. Sensor. Actuat., 2005, 107B: 695 | 22 | LeeI, AkbarS A, DuttaP K. High temperature potentiometric carbon dioxide sensor with minimal interference to humidity [J]. Sensor. Actuat., 2009, 142B: 337 | 23 | TamuraS, HasegawaI, ImanakaN, et al. Carbon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonate based auxiliary electrode [J]. Sensor. Actuat., 2005, 108B: 359 | 24 | AonoH, ItagakiY, SadaokaY. Na3Zr2Si2PO12-based CO2 gas sensor with heat-treated mixture of Li2CO3 and Nd2O3 as an auxiliary electrode [J]. Sensor. Actuat., 2007, 126B: 406 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|