Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 699-704    DOI: 10.11901/1005.3093.2019.192
  研究论文 本期目录 | 过刊浏览 |
玻璃纤维/环氧树脂泡沫夹层板的热解动力学
陈松华1,2,徐艳英1,2(),王志1,2,王静3
1. 沈阳航空航天大学安全工程学院 沈阳 110136
2. 沈阳航空航天大学 辽宁省飞机火爆防控及可靠性适航技术重点实验室 沈阳 110136
3. 沈阳航空航天大学材料科学与工程学院 沈阳 110136
Pyrolysis Kinetics of Glass Fiber/Epoxy Foam Sandwich Panel
CHEN Songhua1,2,XU Yanying1,2(),WANG Zhi1,2,WANG Jing3
1. School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
2. Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University, Shenyang 110136, China
3. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

陈松华,徐艳英,王志,王静. 玻璃纤维/环氧树脂泡沫夹层板的热解动力学[J]. 材料研究学报, 2019, 33(9): 699-704.
Songhua CHEN, Yanying XU, Zhi WANG, Jing WANG. Pyrolysis Kinetics of Glass Fiber/Epoxy Foam Sandwich Panel[J]. Chinese Journal of Materials Research, 2019, 33(9): 699-704.

全文: PDF(1772 KB)   HTML
摘要: 

使用DTG-60(AH)热重分析仪分析了玻璃纤维/环氧树脂泡沫夹层板在不同升温速率和不同氧含量条件下的热分解特性。结果表明,在空气中玻璃纤维/环氧树脂泡沫夹层板的热分解反应可分为三个阶段。随着升温速率的提高,热分解反应的初始反应温度、终止反应温度以及最大质量损失速率温度均向高温方向移动。氧含量的降低对热分解的第三阶段有较大的影响。采用Flynn-Wall-Ozawa法和Starink法进行热解动力学分析,得到玻璃纤维/环氧树脂泡沫夹层板的表观活化能。

关键词 复合材料玻璃纤维/环氧树脂泡沫夹层板热分解特性热解动力学表观活化能    
Abstract

The thermal decomposition characteristics of glass fiber/epoxy foam sandwich panels was studied via DTG-60(AH) thermogravimetric analyzer by different heating rates and in three atmospheres with different oxygen contents. The results show that the pyrolysis reaction of glass fiber/epoxy foam sandwich panels in air can be differentiated into three stages. As the heating rate increases, the initial reaction temperature, the termination reaction temperature and the maximum mass loss rate temperature of the pyrolysis reaction shifted to the high temperature. The decrease of oxygen content in atmospheres has a greater impact on the third stage of thermal decomposition. The pyrolysis kinetics were analyzed by the Flynn-Wall-Ozawa method and the Starink method to obtain the apparent activation energy.

Key wordscomposites    glass fiber/epoxy foam sandwich panels    pyrolysis characteristics    pyrolysis kinetics    apparent activation energy
收稿日期: 2019-04-10     
ZTFLH:  V258  
基金资助:国家自然科学基金(51403129);辽宁省自然科学基金(2018550705);辽宁省教育厅科学技术项目(JYT19065)
作者简介: 陈松华,女,1995年生,硕士生
图1  实验用样品的TG和DTG曲线
SampleSandwich panelSurface materialFoam core
Temperature range/℃First stage246~334249~344244~296
Second stage334~472344~484455~664
Third stage472~663484~633-
Initial decomposition temperature/℃246249244
Final temperature/℃663633664
The temperature of maximum weight loss rate/℃First stage269308270
Second stage369382551
Third stage546539-
表 1  实验用样品热分解各阶段的温度参数
图2  不同升温速率条件下的TG和DTG曲线

Heating rate

/℃·min-1

510203040
Temperature range/℃First stage227~304235~317246~334250~344260~359
Second stage304~404317~445334~472344~486359~506
Third stage404~545445~620472~663486~689506~701
Initial decomposition temperature/℃227235246250260
Final temperature/℃545620663689701

The temperature of maximum weight loss rate

/℃

First stage244256269279287
Second stage321346369393397
Third stage506532546558566
表 2  不同升温速率条件下热分解的温度参数
图3  不同氧含量条件下的TG和DTG曲线
图4  热分解过程中的lgβ-1/T关系曲线
Conversion α%FWO methodStarink method
Slope KfEf/kJ·mol-1Slope KsEs/kJ·mol-1
10-5.68103.47-12.16100.76
20-5.3196.62-11.3594
30-5.97108.6-12.6104.36
40-7.59138.16-16.34135.32
50-11.65212.09-25.62212.19
60-10.33187.98-22.46186.06
70-7.23131.68-15.26126.42
80-6.98127.08-14.63121.21
90-6.68121.68-13.91115.23
-136.37-132.84
表3  用FWO法和Starink法计算出的样品表观活化能
图5  热分解过程中的lnβT1.8-1/T曲线
1 ChenL H, FuJ B, WangQ, et al. Application of composite sandwich structure on aviation [J]. Trainer, 2014, (2): 44
1 陈龙辉, 付杰斌, 王 强等. 复合材料夹层结构在航空领域的应用 [J]. 教练机, 2014, (2): 44)
2 DouR L, HuP. Application of composite foam sandwich structure in civil aircraft [J]. Civil Aircraft Design & Research, 2004(3):42-45
2 窦润龙, 胡 培. 复合材料泡沫夹层结构在民机中的应用 [J]. 民用飞机设计与研究, 2004, (3): 42)
3 CMH-17 Coordinating committee, Wang H, Shen Z. Composite Handbook: Composite Sandwich Structure [M]. Shanghai: Jiaotong University Press, 2016
3 CMH-17协调委员会, 汪海, 沈真. 复合材料手册:复合材料夹层结构 [M]. 上海: 交通大学出版社, 2016)
4 MamalisA G, ManolakosD E, IoannidisM B, et al. On the crushing response of composite sandwich panels subjected to edgewise compression: experimental [J]. Composite Structures, 2005, 71(2):246
5 ZhangZ S, LiangS. Fabrication process and inter layer bonding properties of embedded medium temperature co-cured composite damping structure [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1972
5 张忠胜, 梁 森. 嵌入式中温共固化复合材料阻尼结构制作工艺及层间结合性能 [J]. 航空学报, 2013, 34(8): 1972)
6 RizovV, ShipshaA, ZenkertD. Indentation study of foam core sandwich composite panels [J]. Composite Structures, 2005, 69(1): 95
7 AidelK J. Repeated impact response of sandwich composites [J]. Journal of Engineering and Sustainable Development, 2017, 21(4): 71
8 ZouG P, ZhangB, ChangZ L. Experiment and numerical simulation on foam sandwich plate pull-out local connection failure [J]. Acta Materiae Compositae Sinica, 2019, 36(4): 881
8 邹广平, 张 冰, 唱忠良等. 复合材料泡沫夹芯板局部连接拉脱破坏试验与数值仿真 [J]. 复合材料学报, 2019, 36(4): 881
9 MohagheghianI, YuL, KabogluC, et al. Impact and mechanical evaluation of composite sandwich structures [J]. Comprehe- nsive Composite Materials II, 2018, 8: 239
10 XinY J, XiaoB, ChengS L, et al. Performance by localized indentation test of composite sandwich of open-cell aluminum foam and epoxy resin [J]. Chinese Journal of Materials Research, 2016, 30(9): 703
10 辛亚军, 肖 博, 程树良等. 开孔泡沫铝-环氧树脂复合夹芯板局压性能试验研究 [J]. 材料研究学报, 2016, 30(9): 703
11 XuY Y, ZhangY, WangZ, et al. Study on pyrolysis kinetics of typical carbon fiber bidirectional sheet [J]. Chinese Journal of Materials Research, 2017, 31(1): 57
11 徐艳英, 张 颖, 王 志等. 典型碳纤维编织布的热解动力学 [J]. 材料研究学报, 2017, 31(1): 57
12 SilvaJ C G D, AlvesJ L F, GaldinoW V D A, et al. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation [J]. Waste Management, 2018, 72: 265
13 RibeiroB, SantosL F P, SantosA L, et al. Thermal decomposition kinetic study of multiwalled carbon nanotubebuckypaper-reinforc ed poly (etherimide) composites [J]. Journal of Ther- moplastic Composite Materials, 2019, 32(1): 62
14 XuL. Investigatiom on thermal degradation and burning behavior of PVC [J]. Fire Science and Technology, 2014, (7): 741
14 徐 亮. 聚氯乙烯热解及火灾行为 [J]. 消防科学与技术, 2014(7): 741
15 ZhangY, WangZ, XuY Y, et al. Study on pyrolysis kinetics of high-strength glass fiber/epoxy resin composites [J]. Fire Science and Technology, 2017, (2): 149
15 张 颖, 王 志, 徐艳英等. 高强玻璃纤维复合材料热解动力学研究 [J]. 消防科学与技术, 2017, (2): 149
16 HuR Z, GaoS L, ZhaoF Q, et al. Thermal Analysis Kinetics, 2nd Edition [M]. Beijing: Science Press, 2008
16 胡荣祖, 高胜利, 赵凤起等. 热分析动力学, 第二版 [M]. 北京: 科学出版社, 2008
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.