Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 660-666    DOI: 10.11901/1005.3093.2021.225
  研究论文 本期目录 | 过刊浏览 |
改善09MnNi容器钢低温冲击韧性的机理
宁博1, 李志超1(), 武会宾1, 张丙军2, 黄曼丽1, 丁超1
1.北京科技大学 钢铁共性技术协同创新中心 北京 100083
2.南京钢铁股份有限公司 南京 210035
Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel
NING Bo1, LI Zhichao1(), WU Huibin1, ZHANG Bingjun2, HUANG Manli1, DING Chao1
1.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Nanjing Iron and Steel Co., Ltd., Nanjing 210035, China
引用本文:

宁博, 李志超, 武会宾, 张丙军, 黄曼丽, 丁超. 改善09MnNi容器钢低温冲击韧性的机理[J]. 材料研究学报, 2022, 36(9): 660-666.
Bo NING, Zhichao LI, Huibin WU, Bingjun ZHANG, Manli HUANG, Chao DING. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. Chinese Journal of Materials Research, 2022, 36(9): 660-666.

全文: PDF(14468 KB)   HTML
摘要: 

用热膨胀法测量了典型容器用09MnNiDR钢的Ac1和Ac3温度,并用在此基础上设计的淬火工艺对其进行热处理。使用扫描电镜、EBSD和夏比冲击试验机等手段研究了09MnNiDR钢在其厚度方向1/2处的组织、织构和低温冲击性能。结果表明:实验钢的Ac1=692.9℃,Ac3=883.1℃。与“准亚温淬火+回火”或“准亚温淬火+亚温淬火+回火”热处理工艺相比,采用“预淬火+准亚温淬火+回火”热处理,能使09MnNiDR钢板1/2厚度处的低温冲击性能有较大的提高。其原因,一是晶粒的细化,二是织构的漫散分布。

关键词 金属材料容器钢准亚温淬火冲击性能织构晶粒尺寸    
Abstract

The phase transition temperature of Ac1 and Ac3 of 09MnNiDR steel for typical vessel was measured by thermal expansion method, and based on this two new quenching processes were designed. The microstructure, texture and low temperature impact properties of the samples at 1/2 thickness of the plate were investigaed by means of SEM, EBSD and Charpy impact tester. The results show that: Ac1 and Ac3 of 09MnNiDR steel is 692.9℃ and 883.1℃ respectively; compared with the "quasi sub temperature quenching + tempering" or "quasi sub temperature quenching + sub temperature quenching + tempering" heat treatment process, the "pre quenching + quasi sub temperature quenching + tempering" heat treatment could improve the low temperature impact property of the samples at 1/2 thickness of 09MnNiDR steel plate greatly, and one reason of the impact property improvement is grain refinement, another reason is the random distribution of texture.

Key wordsmetallic materials    vessel steel    quasi sub temperature quenching    impact property    texture    grain size
收稿日期: 2021-04-15     
ZTFLH:  TG156.31  
作者简介: 宁博,男,1988年生,博士生
SampleCSiMnNiFe
09MnNi0.09≤0.51.400.77balance
表1  试验钢的化学成分
图1  09MnNi钢相变点的测定
SampleThe first quenchingThe second quenchingTempering
A1880℃/600~610℃
A2900℃870℃
B1880℃810℃
B2900℃870℃
表2  热处理工艺
图2  取样示意图
图3  试样A1、A2、B1和B2的金相组织
图4  试样A1、A2、B1和B2的冲击断口SEM照片
图5  试样A1、A2、B1和B2的取向成像和立方晶系φ2=45° ODF图中常见的织构及分布
Sample

{100}

<001>

{100}

<011>

{011}

<100>

{112}

<111>

{111}

<112>

{111}

<110>

{011}

<211>

{112}

<110>

{110}

<110>

A17.316.083.1513.0015.8014.403.773.620.96
A25.615.524.0212.0013.009.518.604.695.86
B17.316.132.3214.7011.409.249.615.072.19
B26.583.803.3310.1012.008.099.375.933.83
表3  典型织构百分含量的统计
图6  各试样的织构含量、方差统计和冲击吸收功的对比
图7  试样A1、A2、B1和B2的晶界分布
图8  各试样的晶粒尺寸统计
图9  大小角度晶界占比的统计
1 Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel [J]. Defect Diffusion Forum, 2011: 110
2 Zeng D F, Lu L T, Gong Y H, et al. Optimization of strength and toughness of railway wheel steel by alloy design [J]. Mater. Des., 2016, 92: 998
doi: 10.1016/j.matdes.2015.12.096
3 Wang C F, Wang M Q, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel [J]. J. Mater. Sci. Technol., 2007, 23(5): 659
4 Zhao Y J, Ren X P, Yang W C, et al. Design of a low-alloy high-strength and high-toughness martensitic steel [J]. Int. J. Min. Met. Mater., 2013, 20(8): 733
doi: 10.1007/s12613-013-0791-7
5 Reveka V N, Nesterenko V M. Toughness of steel 09G2S at low temperatures in relation to cleanness of grain boundaries [J]. Met. Sci. Heat Treat., 1975, 17(5): 434
doi: 10.1007/BF00663227
6 Sato K. Improving the toughness of ultrahigh strength steel[D]. Berkeley: University of California, Berkeley. 2002
7 Singh R K, Singh A K, Prasad N E. Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy [J]. Mat. Sci. Eng. A, 2000, 277(1-2): 114
doi: 10.1016/S0921-5093(99)00549-3
8 Shukla R, Ghosh S K, Chakrabarti D, et al. Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon microalloyed steel for pipeline application [J]. Mat. Sci. Eng. A, 2013, 587(18): 201
doi: 10.1016/j.msea.2013.08.054
9 Cai H L, Mou J S, Hou Z Y. Microstructure, texture and property of interstitial-Free (IF) steel after ultra-fast annealing [J]. Adv. Mater. Res., 2015, 1120-1121:1003
10 Koh Y H, Park No J, Choi J H. Texture and corrosion property in the hopeite crystal coated steel [J]. Mater. Sci. Forum, 1998: 635
11 Feng Y L, Li S, Yin J Z, et al. Effect of normalizing on texture and deep-drawing property of 10Cr17 ferrite stainless steel [J]. Adv. Mater. Res., 2012, 418-420: 125
12 Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles [J]. Mat. Sci. Eng. A, 2012, 531: 2
doi: 10.1016/j.msea.2011.09.072
13 Yang X L, Xu Y B, Tan X D, et al. Relationships among crystallographic texture, fracture behavior and Charpy impact toughness in API X100 pipeline steel [J]. Mat. Sci. Eng. A, 2015, 641: 96
doi: 10.1016/j.msea.2015.06.029
14 Kang J, Li C N, Yuan G, et al. Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture [J]. Mater. Lett., 2016, 175: 157
doi: 10.1016/j.matlet.2016.04.007
15 Ma J N, Wang R Z, Yang C F, et al. Effect of surface layer with ultrafine grains on crack arrestability of heavy plate [J]. Acta Metall. Sinica, 2017(05): 549
15 马江南, 王瑞珍, 杨才福 等. 中厚板表层超细晶对止裂性能的影响 [J]. 金属学报, 2017, (05): 549
16 Sen R, Ghosh M, Kaiser M S. Microstructure-texture-fracture toughness property correlation in annealed Al-6Mg alloy with minor scandium and zirconium additions [J]. Fatigue Fract. Eng. Mater. Struct., 2012, 35(11): 1071
doi: 10.1111/j.1460-2695.2012.01700.x
17 Romaniv O N, Tkach A N, Gladkii Y N, et al. Fracture toughness of steel with a martensite-ferrite structure [J]. Mater. Sci., 1978, 13(3): 254
doi: 10.1007/BF00716115
18 Du M X, Wang M J. Effect of microstructure on toughness of high strength bainitic steel [J]. Heat Treat. Met., 2015(4):40-44
18 杜民献, 王孟君. 显微组织对贝氏体高强度钢冲击性能的影响 [J]. 金属热处理, 2015, (4): 40
19 Zhang X L, Feng Y R, Zhuang C J, et al. Study on effective particle size of high grade pipeline steels and relationship between CVN [J]. J. Mater. Eng., 2008, (007): 1
19 张小立, 冯耀荣, 庄传晶 等. 高钢级管线钢中有效晶粒尺寸及与CVN关系研究 [J]. 材料工程, 2008, (007): 1
20 Li Z T, Chai F, Yang C F, et al. Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel [J]. Chin. J. Mater. Res., 2018, 32(12): 11
20 李振团, 柴 锋, 杨才福 等. 淬火工艺对UHS海工钢力学性能的影响 [J]. 材料研究学报, 2018, 32(12): 11
21 Sa S Y, Wang P. Grain boundary characterization and its influence on fatigue crack initiation and propagation in Ti-15-3 sheet [J]. The Chinese Journal of Nonferrous Metals, 2010, 20: 429
21 撒世勇, 王 平. Ti-15-3板材中晶界特征及其对疲劳裂纹萌生与扩展的影响 [J]. 中国有色金属学报, 2010, 20: 429
22 Jiang J X, Wu H B, Liang J, et al. Microstructural characterization and impact toughness of a jackup rig rack steel treated by intercritical heat treatment [J]. Mat. Sci. Eng. A, 2013, 587(10): 359
doi: 10.1016/j.msea.2013.09.004
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.