Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 649-659    DOI: 10.11901/1005.3093.2021.490
  研究论文 本期目录 | 过刊浏览 |
热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响
何禹锋1,2, 王莉1, 王栋1, 王绍钢3, 卢玉章1, 谷阿山4, 申健1(), 张健1
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
4.中国航发贵州黎阳航空动力有限公司 贵阳 550014
Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33
HE Yufeng1,2, WANG Li1, WANG Dong1, WANG Shaogang3, LU Yuzhang1, GU Ashan4, SHEN Jian1(), ZHANG Jian1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.AECC Guizhou Liyang Aviation Power Company Limited, Guiyang 550014, China
引用本文:

何禹锋, 王莉, 王栋, 王绍钢, 卢玉章, 谷阿山, 申健, 张健. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响[J]. 材料研究学报, 2022, 36(9): 649-659.
Yufeng HE, Li WANG, Dong WANG, Shaogang WANG, Yuzhang LU, Ashan GU, Jian SHEN, Jian ZHANG. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. Chinese Journal of Materials Research, 2022, 36(9): 649-659.

全文: PDF(3910 KB)   HTML
摘要: 

对第三代DD33单晶高温合金进行标准热处理、热等静压以及不同制度的后续固溶和时效处理,并在850℃/650 MPa和1100℃/170 MPa条件下进行高温持久性能实验,使用金相显微镜(OM)、扫描电子显微镜(SEM)和X射线三维成像技术(XCT)等手段观察和表征不同状态的样品,研究了热等静压和热处理对这种合金显微组织和持久性能的影响。结果表明:铸态DD33单晶高温合金经过适当的热等静压和后续热处理工艺后,样品的组织形貌(γ′相尺寸、体积分数与立方化程度)与标准热处理态基本相同。与标准热处理态合金相比,热等静压处理后合金显微孔洞的体积分数和尺寸均显著降低,其体积分数从0.0190%降低到0.0005%,最大孔等效直径从36.9 μm减小到14.2 μm。在850℃/650 MPa和1100℃/170 MPa条件下热等静压后的样品持久寿命均显著延长。这表明,适当的热等静压和热处理能消除合金内部的显微孔洞缺陷,使其持久性能显著提高。

关键词 金属材料热等静压单晶高温合金显微孔洞持久性能X射线成像    
Abstract

The third generation DD33 single crystal superalloy was subjected to standard heat treatment and hot isostatic pressing respectively, and then to different post-solution and -aging treatments. Hereafter, the effect of hot isostatic pressing and heat treatment on the microstructure and durability of the alloy were investigated by means of high-temperature endurance tests at 850℃/650 MPa and 1100℃/170 MPa, as well as metallographic microscope (OM), scanning electron microscope (SEM) and X-ray three-dimensional imaging (XCT). The results show that after proper hot isostatic pressing and subsequent heat treatment, the as-cast DD33 single crystal superalloys present more or less the same microstructure of (γ' phase size, volume fraction and cubic degree) as those subjected to standard heat treatment. Compared with the standard heat treated alloy, the volume fraction and size of the micropores of the alloy decreased significantly after hot isostatic pressing, from 0.0190% to 0.0005%, and the maximum equivalent diameter of the micropores decreased from 36.9 μm to 14.2 μm. The durable life of the alloy subjected to hot isostatic pressing was significantly prolonged when testing by 850℃/650 MPa and 1100℃/170 MPa. These results show that proper hot isostatic pressing and heat treatment can eliminate the micro voids, therewith, improve the durability of the alloy.

Key wordsmetal materials    hot isostatic pressing    single crystal superalloy    micro-pore    stress rupture properties    X-ray tomography
收稿日期: 2021-08-24     
ZTFLH:  TG132.32  
基金资助:国家自然科学基金(51631008);国家自然科学基金(91860201);国家自然科学基金(51771204);国家自然科学基金(51911530154);国家自然科学基金(U1732131);国家重大科技专项(2017-VII-0008-0101);国家重大科技专项(2017-VI-0003-0073);国家重大科技专项(J2019-Ⅵ-0010);中国科学院重点部署项目(ZDRWCN-2019-01)
作者简介: 何禹锋,男,1993年生,博士生
AlloyCrCoWMoAlTaReNi
DD333.59.06.01.56.08.04.0Bal.
表1  实验用高温合金的名义成分
SpecimenStateHeat treatment process
ACAs-cast-
SHTStandard heat treatment1335℃/10 h/AC*+1180℃/4 h/AC*+870℃/24 h/AC*
AHAs-cast+HIP1310℃/120 MPa/4 h
AHS1As-cast+HIP+solution treatment 11310℃/120 MPa/4 h+1325℃/2 h/AC*
AHS2As-cast+HIP+solution treatment 21310℃/120 MPa/4 h+1325℃/6 h/AC*
AHS3As-cast+HIP+solution treatment 31310℃/120 MPa/4 h+1325℃/10 h/AC*
AHS3HT1As-cast+HIP+solution treatment 3+heat treatment 11310℃/120 MPa/4 h+1325℃/10 h/AC* +1120℃/4 h/AC*+870℃/24 h/AC*
AHS3HT2As-cast+HIP+solution treatment 3+heat treatment 21310℃/120 MPa/4 h+1325℃/10 h/AC* +1150℃/4 h/AC*+870℃/24 h/AC*
AHS3HT3As-cast+HIP+solution treatment 3+heat treatment 31310℃/120 MPa/4 h+1325℃/10 h/AC* +1180℃/4 h/AC*+870℃/24 h/AC*
表2  实验所涉及热等静压参数及热处理制度
ParameterXradia Versa XRM-500
Energy120 kV
Voxel resolution1.5 μm
Scan time9 h
Field of view1.5 mm×1.5 mm×2.0 mm
Number of projections1600~2000 (360° rotation)
Exposure time8 s
Detector binning×2
表3  XCT设备所采用的工作参数
图1  HRS铸态DD33合金的组织形貌
图2  HRS标准热处理态DD33合金的组织形貌
图3  HRS铸态和热等静压态DD33合金的组织形貌
图4  不同热等静压后续固溶处理态DD33合金的组织形貌
图5  不同热等静压后续完整热处理态DD33合金γʹ 的组织形貌
图6  热等静压态和热等静压后续完整热处理态DD33合金中碳化物附近的EBSD结果
图7  准原位观察DD33铸态样品热等静压前后微孔的演化
图8  HRS标准热处理态和热等静压后完整热处理态DD33合金内部微孔的三维特征
Test conditionStateStress rupture lifetime, t/hElongation, δ/%
850℃/650 MPaHRS (SHT)76.418.3
HIP (AHS3HT3)95.327.6
1100℃/170 MPaHRS (SHT)38.827.0
HIP (AHS3HT3)51.933.1
表4  热等静压对DD33合金不同条件下持久性能的影响
图9  DD33合金HRS和HIP样品在1100℃/170 MPa下持久断口的组织形貌
1 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power., 2006, 22(2): 361
doi: 10.2514/1.18239
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(9): 1077
2 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(9): 1077
3 Fu H Z, Guo J J, Liu L, et al. Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Press, 2008:7
3 傅恒志, 郭景杰, 刘 林 等. 先进材料定向凝固 [M]. 北京: 科学出版社, 2008: 7
4 Aveson J W, Tennant P A, Foss B J, et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61(14): 5162
doi: 10.1016/j.actamat.2013.04.071
5 Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans B, 2000, 31(4): 801
doi: 10.1007/s11663-000-0117-9
6 Link T, Zabler S, Epishin A, et al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys [J]. Mater. Sci. Eng. A, 2006, 425(1-2): 47
doi: 10.1016/j.msea.2006.03.005
7 le Graverend J B, Adrien J, Cormier J. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: toward understanding what is damage [J]. Mater. Sci. Eng. A, 2017, 695: 367
doi: 10.1016/j.msea.2017.03.083
8 Ruttert B, Meid C, Roncery L M, et al. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy [J]. Scr. Mater., 2018, 155: 139
doi: 10.1016/j.scriptamat.2018.06.036
9 Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans. A, 2007, 38(6): 1177
10 Loh N L, Sia K Y. An overview of hot isostatic pressing [J]. J. Mater. Process. Technol., 1992, 30(1): 45
doi: 10.1016/0924-0136(92)90038-T
11 Guo H M, Zhao Y S, Zheng S, et al. Effect of hot-isostatic pressing on microstructure and mechanical properties of second generation single crystal superalloy DD6 [J]. J. Mater. Eng., 2016, 44(10): 60
11 郭会明, 赵云松, 郑 帅 等. 热等静压对第二代单晶高温合金DD6显微组织和力学性能的影响 [J]. 材料工程, 2016, 44(10): 60
12 He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56(9): 1195
doi: 10.11900/0412.1961.2020.00020
12 和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56(9): 1195
doi: 10.11900/0412.1961.2020.00020
13 Chang J C, Choi C, Kim J C, et al. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing [J]. J. Mater. Eng. Perform., 2003, 12(4): 420
doi: 10.1361/105994903770342953
14 Epishin A, Camin B, Hansen L, et al. Synchrotron 3D μ-Tomography of Porosity during Hot Isostatic Pressing of a Single-Crystal Nickel-Base Superalloy [J]. Mater. Sci. Forum., 2021, 1016: 102
doi: 10.4028/www.scientific.net/MSF.1016.102
15 Mujica Roncery L, Lopez-Galilea I, Ruttert B, et al. On the Effect of Hot Isostatic Pressing on the Creep Life of a Single Crystal Superalloys [J]. Adv. Eng. Mater., 2016, 18(8): 1381
doi: 10.1002/adem.201600071
16 Cervellon A, Cormier J, Mauget F, et al. Very high cycle fatigue of Ni-based single-crystal superalloys at high temperature [J]. Metall. Mater. Trans. A, 2018, 49(9): 3938
17 Reed R C, Cox D C, Rae C M F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 C [J]. Mater. Sci. Eng. A, 2007, 448(1-2): 88
doi: 10.1016/j.msea.2006.11.101
18 Roncery L M, Lopez-Galilea I, Ruttert B, et al. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy [J]. Mater. Des., 2016, 97: 544
doi: 10.1016/j.matdes.2016.02.051
19 Li X W. Effect of carbon on the microstructure and creep property of a third generation single crystal nickle-based superalloy [D]. Shenyang: University of Chinese Academy of Sciences, 2013
19 李相伟. 碳对第三代镍基单晶高温合金组织和蠕变持久性能的影响 [D]. 沈阳: 中国科学院大学, 2013
20 Kearsey R M, Beddoes J C, Jones P, et al. Compositional design considerations for microsegregation in single crystal superalloy systems [J]. Intermetallics, 2004, 12(7-9): 903
doi: 10.1016/j.intermet.2004.02.041
21 Jiang R, Bull D J, Evangelou A, et al. Strain accumulation and fatigue crack initiation at pores and carbides in a SX superalloy at room temperature [J]. Int. J. Fatigue, 2018, 114: 22
doi: 10.1016/j.ijfatigue.2018.05.003
22 Huang Y Q, Wang D, Lu Y Z, et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413 [J]. Chin. J. Mater. Res., 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
22 黄亚奇, 王 栋, 卢玉章 等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为 [J]. 材料研究学报, 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
23 Wang L, Xie G, Zhang J, et al. On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy [J]. Scr. Mater., 2006, 55(5): 457
doi: 10.1016/j.scriptamat.2006.05.013
24 Bokstein B S, Epishin A I, Link T, et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization [J]. Scr. Mater., 2007, 57(9): 801
doi: 10.1016/j.scriptamat.2007.07.012
25 Han D Y, Jiang W G, Xiao J H, et al. Effect of section size and solution treatment on micropore of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2018, 32(3): 168
doi: 10.11901/1005.3093.2017.152
25 韩东宇, 姜卫国, 肖久寒 等. 截面尺寸和固溶制度对单晶高温合金DD33中显微孔洞的影响 [J]. 材料研究学报, 2018, 32(3): 168
doi: 10.11901/1005.3093.2017.152
26 Shi Q Y, Li X H, Zheng Y R, et al. Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes [J]. Acta Metall. Sin., 2012, 48(10): 1237
doi: 10.3724/SP.J.1037.2012.00172
26 石倩颖, 李相辉, 郑运荣 等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成 [J]. 金属学报, 2012, 48(10): 1237
27 Epishin A, Fedelich B, Link T, et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling [J]. Mater. Sci. Eng. A, 2013, 586: 342
doi: 10.1016/j.msea.2013.08.034
28 Li Y, Wang L, Zhang G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850℃ [J]. Mater. Sci. Eng. A, 2019, 760: 26
doi: 10.1016/j.msea.2019.05.075
29 Le Graverend J B, Cormier J, Kruch S, et al. Microstructural parameters controlling high-temperature creep life of the nickel-base single-crystal superalloy MC2 [J]. Metall. Mater. Trans. A, 2012, 43(11): 3988
30 Isaac A, Sket F, Reimers W, et al. In situ 3D quantification of the evolution of creep cavity size, shape, and spatial orientation using synchrotron X-ray tomography [J]. Mater. Sci. Eng. A, 2008, 478(1-2): 108
doi: 10.1016/j.msea.2007.05.108
31 Shi Z X, Liu S Z, Xiong J C, et al. Effect of hot isostatic pressing on the microstructure and stress rupture properties of single crystal superalloy [J]. Rare Met. Mater. Eng., 2015, 44(9): 2300
31 史振学, 刘世忠, 熊继春. 热等静压对单晶高温合金组织和持久性能的影响 [J]. 稀有金属材料与工程, 2015, 44(9): 2300
32 Fritzemeier L G. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [A]. Superalloys 1988 [C]. Warrendale, 1988: 265
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.