|
|
AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为 |
毛建军1, 富童2, 潘虎成1( ), 滕常青1, 张伟1,2, 谢东升2, 吴璐1 |
1.中国核动力研究设计院第一研究所 成都 610041 2.东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 |
|
Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy |
MAO Jianjun1, FU Tong2, PAN Hucheng1( ), TENG Changqing1, ZHANG Wei1,2, XIE Dongsheng2, WU Lu1 |
1.The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610005, China 2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
Jianjun MAO,
Tong FU,
Hucheng PAN,
Changqing TENG,
Wei ZHANG,
Dongsheng XIE,
Lu WU.
Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. Chinese Journal of Materials Research, 2023, 37(9): 641-648.
1 |
Zhang P, Jiang L, Yang J X, et al. Research progress in refractory high entropy alloys for nuclear applications [J]. Mater. Rev., 2022, 36(14):1
doi: 10.1179/imr.1991.36.1.1
|
1 |
张 平, 蒋 丽, 杨金学 等. 核用难熔高熵合金的研究进展 [J]. 材料导报, 2022, 036(14):1.
|
2 |
Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
|
2 |
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
|
3 |
Wang X J, Qiao J W, Wu Y C. High Entropy Alloys: the new irradiation-resistant candidate materials towards the fusion reactors [J]. Mater. Rev., 2020, 34(17):9
|
3 |
王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17):9
|
4 |
Yong Z A, Ttz A, Zhi T B, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61:1
doi: 10.1016/j.pmatsci.2013.10.001
|
5 |
Yan X H, Zhang Y. Preparation and forming process of high-entropy alloy [J]. J. Netshape Form. Eng., 2022, 14(1): 19
|
5 |
闫薛卉, 张勇. 高熵合金的制备成形加工工艺 [J]. 精密成形工程, 2022, 14(01): 19
|
6 |
He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta. Mater., 2014, 62: 105
doi: 10.1016/j.actamat.2013.09.037
|
7 |
Tripathy B, Saha R, Bhattacharjee P P. Microstructure and unusually strong recrystallization texture of the FCC phase of a cost-effective high-strength dual-phase AlCrFe2Ni2 high entropy alloy [J]. Intermetallics, 2022, 145: 107559.
doi: 10.1016/j.intermet.2022.107559
|
8 |
Gong Z J, Li C H, Li XY, et al. Microstructure and phase transition during heat treatment of a new Cu rich high-entropy alloy [J]. Journal of Netshape Forming Engineering, 2022, 14(2): 83
|
8 |
龚子杰, 李春辉, 李晓宇 等. 新型含Cu高熵合金的微观组织及热处理过程相变 [J]. 精密成形工程, 2022, 14(02): 83
|
9 |
Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
|
9 |
王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
|
10 |
Zka J, Jaroslav M, Vesel J, et al. Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr System [J]. Entropy, 2019, 21(2):114
doi: 10.3390/e21020114
|
11 |
Gao N, Long Y, Peng H Y, et al. Microstructure and mechanical properties of TiVNbTa refractory high-entropy alloy prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2019, 33: 572
|
11 |
高 楠, 龙 雁, 彭海燕 等. 粉末冶金TiVNbTa难熔高熵合金的组织和力学性能 [J]. 材料研究学报, 2019, 33: 572
|
12 |
Ma A, Hws B, Hjra B. Mo and Ta Addition in NbTiZr Medium Entropy Alloy to Overcome Tensile Yield Strength-Ductility Trade-off. [J]. J. Mater. Sci. Technol., 2022, 109: 176
doi: 10.1016/j.jmst.2021.08.073
|
13 |
Dirras G, Gubicza J, Heczel A, et al. Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy [J]. Mater. Charact., 2015, 108: 1
doi: 10.1016/j.matchar.2015.08.007
|
14 |
Senkov O N, Rao S, Chaput K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys [J]. Acta. Mater., 2018, 151: 201
doi: 10.1016/j.actamat.2018.03.065
|
15 |
Niu P D, Li R D, Yuan T C, et al. Research progress of high-entropy alloys by additive manufacturing [J]. J. Netshape Form. Eng., 2019, 11(4): 51
|
15 |
牛朋达, 李瑞迪, 袁铁锤 等. 增材制造高熵合金研究进展 [J]. 精密成形工程, 2019, 11(04): 51
|
16 |
Xie H B, Liu G Z, Guo J J. Effect of Zr addition on microstructure and corrosion properties of AlFeCrCoCuZrx high-entropy alloys [J]. J. Mater. Eng., 2016, 44(6): 44
|
16 |
谢红波, 刘贵仲, 郭景杰. Zr元素对AlFeCrCoCuZrx高熵合金组织及腐蚀性能的影响 [J]. 材料工程, 2016, 44(6): 44
|
17 |
Li T X, Miao J W, Lu Y P, et al, Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys [J]. Int. J. Refract. Met. H., 2022, 103: 105762
doi: 10.1016/j.ijrmhm.2021.105762
|
18 |
Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties [J]. Nonferr. Metal. Sci. Eng., 2020, 11(6):7
|
18 |
洪 达, 王和斌, 侯陇刚 等. 间隙原子对高熵合金组织及性能影响的研究现状 [J]. 有色金属科学与工程, 2020, 11(6):7
|
19 |
Zong Y, Hashimoto N, Oka H. Study on irradiation effects of refractory bcc high-entropy alloy [J]. Nucl. Mater. Energy., 2022, 31: 101158
|
20 |
Li Y, Zhang P, Zhang J, et al. Oxidation behavior of AlCoCrFeNiSi high-entropy alloys at 1100 [J]. Corros. Sci., 2021, 190(1): 109633
doi: 10.1016/j.corsci.2021.109633
|
21 |
Li G, Wen Y, Yu Z M, et al. Effect of Al content on properties of CrFeNiAlxSi high entropy alloy [J]. Chin. J. Mater. Res., 2021, 35(9): 712
|
21 |
李 刚, 温 影, 于中民 等. Al含量对CrFeNiAl(x)Si系高熵合金性能的影响 [J]. 材料研究学报, 2021, 35(9): 712
|
22 |
Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. H., 2021, 100: 105636
doi: 10.1016/j.ijrmhm.2021.105636
|
23 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
|
24 |
Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses [J]. Mater. Sci. Eng., 2001, 304-306A: 446
|
25 |
Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci-Mater., 2011, 21(6): 433
|
26 |
Griffiths M. A review of microstructure evolution in zirconium alloys during irradiation [J]. J. Nucl. Mater., 1988, 159: 190-218
doi: 10.1016/0022-3115(88)90093-1
|
27 |
Lefebvre F, Lemaignan C. Heavy ion-induced amorphlsation of Zr(Fe, Cr)2 precipitates in Zircaloy-4 [J]. J. Nucl. Mater., 1989, 165(2):122-127
doi: 10.1016/0022-3115(89)90240-7
|
28 |
El-Atwani O, Esquivel E, Efe M, et al. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size [J]. Acta. Mate., 2018, 149: 206
doi: 10.1016/j.actamat.2018.02.035
|
29 |
Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the burgers vector of perfect dislocation loops without contact with the external dislocations [J]. Phys. Rev. Lett., 2006, 96(12): 125506
doi: 10.1103/PhysRevLett.96.125506
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|