Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 641-648    DOI: 10.11901/1005.3093.2022.526
  研究论文 本期目录 | 过刊浏览 |
AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为
毛建军1, 富童2, 潘虎成1(), 滕常青1, 张伟1,2, 谢东升2, 吴璐1
1.中国核动力研究设计院第一研究所 成都 610041
2.东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy
MAO Jianjun1, FU Tong2, PAN Hucheng1(), TENG Changqing1, ZHANG Wei1,2, XIE Dongsheng2, WU Lu1
1.The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610005, China
2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
Jianjun MAO, Tong FU, Hucheng PAN, Changqing TENG, Wei ZHANG, Dongsheng XIE, Lu WU. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. Chinese Journal of Materials Research, 2023, 37(9): 641-648.

全文: PDF(14071 KB)   HTML
摘要: 

基于电弧熔炼法将可燃毒物硼(B)元素添加到AlNbMoZr基难熔高熵合金(RHEA)中,制备出一种具有中子毒物特性的高强度新型核用RHEA材料。对其进行强度为4 MeV的Kr离子辐照实验,研究了这种材料的Kr离子辐照损伤行为。室温压缩结果表明,AlNbMoZrB合金具有优异的力学性能,其压缩屈服强度可达1180 MPa,压缩强度约为1274 MPa,塑性约为4.8%。对辐照前后这种合金的相结构和显微组织演化的分析结果表明,AlNbMoZrB合金具有典型的枝晶组织,其中枝晶区为无序BCC结构基体相,枝晶间区由FCC结构的Al-Zr相及α-Zr相组成,经Kr离子辐照后α-Zr相发生非晶化转变,还产生了高密度<100>和1/2<111>型位错环。在室温辐照条件下位错环的体积密度约为4.11×1022 m-3,尺寸为12~16 nm;在300℃辐照条件下位错环的体积密度降低到约1.63×1022 m-3,尺寸增大到23~27 nm。

关键词 金属材料难熔高熵合金力学性能离子辐照位错环显微组织    
Abstract

As a burnable poison element, boron (B) has been successfully added into the AlNbMoZr based refractory high-entropy alloy (RHEA) via arc melting method, thus a novel high strength nuclear RHEA material with neutron toxic properties was developed. Hence, the alloy was subjected to irradiation of Kr ions of 4 MeV intensity to assess its irradiation damage behavior in terms of its microstructure and mechanical property evolution. The results of room temperature compression testing show that AlNbMoZrB alloy has excellent mechanical property with compression yield strength ~1180 MPa, fracture strength ~1274 MPa, and plasticity ~4.8%. By comparatively examining the phase structure and microstructure evolution of AlNbMoZrB alloy before and after irradiation, it is found that AlNbMoZrB alloy has a typical dendrite structure, in which the dendrite region is a matrix phase with disordered BCC structure, and the interdendrite region is composed of FCC structure Al-Zr phase and α-Zr phase. After irradiation with Kr ions, the α-Zr phase underwent an amorphous transformation. At the same time, high density <100> and 1/2<111> dislocation loops are also generated. The volume density of the dislocation loop is ~4.11×1022 m-3 and the size is between 12 nm and 16 nm after subjected Kr ions irradiation at room temperature. The volume density of the dislocation loop decreased to ~1.63×1022 m-3 and the size increased to 23~27 nm after subjected the same Kr ions irradiation at 300℃.

Key wordsmetallic materials    refractory high entropy alloy    mechanical properties    ion irradiation    dislocation loop    microstructure
收稿日期: 2022-10-08     
ZTFLH:  TG113  
基金资助:国家自然科学基金(U2067218);国家自然科学基金(U2167213);国家自然科学基金(U2241235);四川省科技厅项目(21MZGC0400);四川省科技厅项目(2022JDJQ0021);中国核工业集团有限公司青年英才菁英项目(CNNC-2021-31);反应堆燃料与材料国家重点实验室项目(6142A06190510);中央高校基本业务费项目(N2202020)
通讯作者: 潘虎成,教授,panhc@atm.neu.edu.cn,研究方向为变形强化镁合金及材料辐照效应
Corresponding author: PAN Hucheng, Tel: (024)83687746, E-mail: panhc@atm.neu.edu.cn
作者简介: 毛建军,男,1984年生,博士
图1  铸态AlNbMoZrB合金的压缩应力-应变曲线和XRD谱
Alloy

σc0.2

/MPa

σp

/MPa

εp

/%

Al5Nb40Mo40Zr15B0.1-cast118012744.8
表1  铸态合金的室温压缩屈服强度、断裂强度和压缩率
图2  铸态AlNbMoZrB合金的背散射图、EDS面和点扫描图
PointsAlNbMoZr

Nominal composition

A (white dendrite rigon)

B (gray interdendritic rigon)

C (black interdendritic rigon)

5

2.06

15.65

14.67

40

46.89

19.97

19.43

40

42.31

27.88

6.62

15

8.74

36.50

59.28

表2  铸态AlNbMoZrB合金的EDS点扫描结果
图3  铸态AlNbMoZrB合金低电压下的背散射图和面扫图
图4  AlNbMoZrB在4.8×1015/cm2 Kr离子辐照条件下的室温TEM形貌
PointsAlNbMoZr

a1

a2

a3

a4

a5

a6

6.84

9.83

1.97

0.85

1.93

9.17

9

21.7

37.67

40.16

39.35

19.21

12.76

27.37

45.46

44.07

36.84

27.36

71.4

41.09

14.91

14.92

13.15

44.26

表3  AlNbMoZrB合金室温辐照点扫描结果
PointsAlNbMoZr

d1

d2

d3

d4

d5

d6

d7

2.37

1.88

1.91

2.65

6.61

4.48

4.31

42.27

42.64

42.84

45.38

23

11.01

20.61

41.46

39.18

38.62

34.76

21.36

9.55

5.25

13.89

16.3

16.64

17.21

49.04

74.96

69.83

表4  AlNbMoZrB合金在300℃辐照的点扫描结果
图5  室温辐照和300℃辐照AlNbMoZrB合金双束条件下的TEM形貌
1 Zhang P, Jiang L, Yang J X, et al. Research progress in refractory high entropy alloys for nuclear applications [J]. Mater. Rev., 2022, 36(14):1
doi: 10.1179/imr.1991.36.1.1
1 张 平, 蒋 丽, 杨金学 等. 核用难熔高熵合金的研究进展 [J]. 材料导报, 2022, 036(14):1.
2 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
2 李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
3 Wang X J, Qiao J W, Wu Y C. High Entropy Alloys: the new irradiation-resistant candidate materials towards the fusion reactors [J]. Mater. Rev., 2020, 34(17):9
3 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17):9
4 Yong Z A, Ttz A, Zhi T B, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61:1
doi: 10.1016/j.pmatsci.2013.10.001
5 Yan X H, Zhang Y. Preparation and forming process of high-entropy alloy [J]. J. Netshape Form. Eng., 2022, 14(1): 19
5 闫薛卉, 张勇. 高熵合金的制备成形加工工艺 [J]. 精密成形工程, 2022, 14(01): 19
6 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta. Mater., 2014, 62: 105
doi: 10.1016/j.actamat.2013.09.037
7 Tripathy B, Saha R, Bhattacharjee P P. Microstructure and unusually strong recrystallization texture of the FCC phase of a cost-effective high-strength dual-phase AlCrFe2Ni2 high entropy alloy [J]. Intermetallics, 2022, 145: 107559.
doi: 10.1016/j.intermet.2022.107559
8 Gong Z J, Li C H, Li XY, et al. Microstructure and phase transition during heat treatment of a new Cu rich high-entropy alloy [J]. Journal of Netshape Forming Engineering, 2022, 14(2): 83
8 龚子杰, 李春辉, 李晓宇 等. 新型含Cu高熵合金的微观组织及热处理过程相变 [J]. 精密成形工程, 2022, 14(02): 83
9 Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
9 王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
10 Zka J, Jaroslav M, Vesel J, et al. Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr System [J]. Entropy, 2019, 21(2):114
doi: 10.3390/e21020114
11 Gao N, Long Y, Peng H Y, et al. Microstructure and mechanical properties of TiVNbTa refractory high-entropy alloy prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2019, 33: 572
11 高 楠, 龙 雁, 彭海燕 等. 粉末冶金TiVNbTa难熔高熵合金的组织和力学性能 [J]. 材料研究学报, 2019, 33: 572
12 Ma A, Hws B, Hjra B. Mo and Ta Addition in NbTiZr Medium Entropy Alloy to Overcome Tensile Yield Strength-Ductility Trade-off. [J]. J. Mater. Sci. Technol., 2022, 109: 176
doi: 10.1016/j.jmst.2021.08.073
13 Dirras G, Gubicza J, Heczel A, et al. Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy [J]. Mater. Charact., 2015, 108: 1
doi: 10.1016/j.matchar.2015.08.007
14 Senkov O N, Rao S, Chaput K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys [J]. Acta. Mater., 2018, 151: 201
doi: 10.1016/j.actamat.2018.03.065
15 Niu P D, Li R D, Yuan T C, et al. Research progress of high-entropy alloys by additive manufacturing [J]. J. Netshape Form. Eng., 2019, 11(4): 51
15 牛朋达, 李瑞迪, 袁铁锤 等. 增材制造高熵合金研究进展 [J]. 精密成形工程, 2019, 11(04): 51
16 Xie H B, Liu G Z, Guo J J. Effect of Zr addition on microstructure and corrosion properties of AlFeCrCoCuZrx high-entropy alloys [J]. J. Mater. Eng., 2016, 44(6): 44
16 谢红波, 刘贵仲, 郭景杰. Zr元素对AlFeCrCoCuZrx高熵合金组织及腐蚀性能的影响 [J]. 材料工程, 2016, 44(6): 44
17 Li T X, Miao J W, Lu Y P, et al, Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys [J]. Int. J. Refract. Met. H., 2022, 103: 105762
doi: 10.1016/j.ijrmhm.2021.105762
18 Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties [J]. Nonferr. Metal. Sci. Eng., 2020, 11(6):7
18 洪 达, 王和斌, 侯陇刚 等. 间隙原子对高熵合金组织及性能影响的研究现状 [J]. 有色金属科学与工程, 2020, 11(6):7
19 Zong Y, Hashimoto N, Oka H. Study on irradiation effects of refractory bcc high-entropy alloy [J]. Nucl. Mater. Energy., 2022, 31: 101158
20 Li Y, Zhang P, Zhang J, et al. Oxidation behavior of AlCoCrFeNiSi high-entropy alloys at 1100 [J]. Corros. Sci., 2021, 190(1): 109633
doi: 10.1016/j.corsci.2021.109633
21 Li G, Wen Y, Yu Z M, et al. Effect of Al content on properties of CrFeNiAlxSi high entropy alloy [J]. Chin. J. Mater. Res., 2021, 35(9): 712
21 李 刚, 温 影, 于中民 等. Al含量对CrFeNiAl(x)Si系高熵合金性能的影响 [J]. 材料研究学报, 2021, 35(9): 712
22 Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. H., 2021, 100: 105636
doi: 10.1016/j.ijrmhm.2021.105636
23 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
24 Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses [J]. Mater. Sci. Eng., 2001, 304-306A: 446
25 Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci-Mater., 2011, 21(6): 433
26 Griffiths M. A review of microstructure evolution in zirconium alloys during irradiation [J]. J. Nucl. Mater., 1988, 159: 190-218
doi: 10.1016/0022-3115(88)90093-1
27 Lefebvre F, Lemaignan C. Heavy ion-induced amorphlsation of Zr(Fe, Cr)2 precipitates in Zircaloy-4 [J]. J. Nucl. Mater., 1989, 165(2):122-127
doi: 10.1016/0022-3115(89)90240-7
28 El-Atwani O, Esquivel E, Efe M, et al. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size [J]. Acta. Mate., 2018, 149: 206
doi: 10.1016/j.actamat.2018.02.035
29 Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the burgers vector of perfect dislocation loops without contact with the external dislocations [J]. Phys. Rev. Lett., 2006, 96(12): 125506
doi: 10.1103/PhysRevLett.96.125506
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.