Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 561-570    DOI: 10.11901/1005.3093.2022.497
  综述 本期目录 | 过刊浏览 |
合金相分离制备多孔金属材料的研究进展
由宝栋1,2, 朱明伟1(), 杨鹏举2,3, 何杰2,3()
1.沈阳航空航天大学材料科学与工程学院 沈阳 110136
2.中国科学院金属研究所 沈阳 110016
3.中国科学技术大学材料科学与工程学院 沈阳 110016
Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation
YOU Baodong1,2, ZHU Mingwei1(), YANG Pengju2,3, HE Jie2,3()
1.School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
Baodong YOU, Mingwei ZHU, Pengju YANG, Jie HE. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. Chinese Journal of Materials Research, 2023, 37(8): 561-570.

全文: PDF(11528 KB)   HTML
摘要: 

总结了合金相分离方法制备多孔金属材料的最新研究进展。结合合金相分离机理,探讨了相分离过程中界面调幅分解和扩散耦合生长对多孔拓扑结构的形成过程的影响。阐述了相分离合金体系、成分变化和工艺参数对多孔结构的形貌特征、孔隙率以及韧带尺寸特征的影响规律。同时,结合其大比表面积和互联韧带等特征,阐述了相分离多孔金属材料的性能及其在催化、电解质电容器、生物医学等领域的应用前景。最后针对合金相分离制备多孔金属的研究发展趋势进行了展望。

关键词 评述金属材料多孔金属合金相分离    
Abstract

This review summarizes the recent research progress in the preparation of porous metal materials by alloy phase separation. Combined with the phase separation mechanism of the alloy, the formation mechanism of the porous structure during the phase separation process was discussed based on the interfacial spinodal decomposition and diffusion-coupled growth. The effect of phase-separated alloy system, composition change and process parameter on the characteristics such as morphology, porosity and ligament size of the porous structure were systematically analyzed. Furthermore, the properties of phase-separated porous metal materials and their application prospects in the fields of catalysis, electrolytic capacitors, and biomedicine are summarized due to their large specific surface area and interconnected ligaments. Finally, the research and development trend of the preparation of porous metals by alloy phase separation is proposed.

Key wordsreview    metallic materials    porous metals    alloy phase separation
收稿日期: 2022-09-14     
ZTFLH:  TB383  
基金资助:国家自然科学基金(52174380);国家自然科学基金(52174380);中国载人航天工程空间应用系统项目(KJZ-YY-NCL06);中国科学院科研仪器设备研制项目(YJKYYQ20210012)
通讯作者: 何杰,研究员, jiehe@imr.ac.cn,研究方向为合金相分离科学与技术;
朱明伟,副教授,mwzhu@sau.edu.cn,研究方向为贵金属回收及资源化利用
Corresponding author: HE Jie, Tel:(024)83973120, E-mail: jiehe@imr.ac.cn;
ZHU Mingwei,Tel:(024)89724198, E-mail: mwzhu@sau.edu.cn
作者简介: 由宝栋,男,1998年生,硕士生
图1  A-B二元相分离合金的典型相图
图2  合金相分离形成多孔结构的机理
图3  反应前沿有序单晶纳米丝的SEM照片[34]
图4  合金相分离体系中A、B、C的混合焓关系
MetalMgBiPbCuSnAgIn
Ti+16-14+8-9-21-2-5
V+23+10+15+5-1+17+12
Cr+24+24+28+12+10+27+20
Mn+10+3+7+4-7+13+3
Fe+18+26+29+13+11+28+19
Co+3+14+17+60+19+7
Ni-4+10+13+4-4+15+2
Nb+32+12+17+9-1+16+15
Cu-3+15+15-+7+2+10
表1  常见金属之间的混合焓ΔHmix(kJ/mol)[36]
PrecursorDealloying mediumEtching mediumPorous metal
TiCuMgHNO3Ti[20]
FeNiMgHNO3Fe[35]
CrNiMgHNO3Cr[35]
NiNbMgHNO3Nb[33]
TiTaCuCuCl2+HClTa[31]
TaTiCuMgHFMg[38]
TiZrCuMgHNO3TiZr[39]
TiCrZrCuMg+MgCaHNO3TiCrZr[40]
TiHfCuMgHNO3TiHf[41]
FeCrNiMgHNO3FeCr[35]
TiNbCuMgHNO3TiNb[42]
NiCrCuAgHNO3NiCr[43]
TiMoCuMgHNO3TiMo[44]
Incoloy 800/825MgHNO3Fe-based[45, 46]
TiVNbMoNiMgHNO3TiVNbMo[47, 48]
MnCBiHNO3C[52]
MgSiBiHNO3Si[50]
CoMoNiMgHCLCo7Mo6[49]
FeMoNiMgHCLFe7Mo6[49]
FeCrMnNiMg+BiHNO3FeCr-based
表2  通过合金相分离制备多孔材料的总结
图5  不同的可溶组分Ti含量[26]
图6  前驱体成分对孔隙率的影响
图7  分级分形多孔FeCr结构形成示意图和多孔FeCr放大的SEM照片[53]
图8  Ni60Nb40带状前驱体在不同工艺参数下通过液态金属Mg相分离反应制备多孔Nb的SEM显微照片[33]
图9  Ti基多孔材料的屈服强度与杨氏模量的关系
1 Tang H P, Zhang Z D. Development status of metal porous materials [J]. Rare Metal Mater. Eng., 1997, 26(1): 3
1 汤慧萍, 张正德. 金属多孔材料发展现状 [J]. 稀有金属材料与工程, 1997, 26(1): 3
2 Jin H J, Kurmanaeva L, Schmauch J, et al. Deforming nanoporous metal: Role of lattice coherency [J]. Acta Mater., 2009, 57(9): 2665
doi: 10.1016/j.actamat.2009.02.017
3 Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electrochemical actuators [J]. Nano Lett., 2010, 10(1): 187
doi: 10.1021/nl903262b
4 Ye X L, Liu F, Jin H J. Electrochemical actuation of nanoporous gold deformed by compression [J]. Acta Metall. Sin., 2014, 50(2): 252
doi: 10.3724/SP.J.1037.2013.00664
4 叶兴龙, 刘 枫, 金海军. 压缩变形纳米多孔金电化学驱动性能研究 [J]. 金属学报, 2014, 50(2): 252
doi: 10.3724/SP.J.1037.2013.00664
5 Ding Y, Zhang Z H. Nanoporous Metals for Advanced Energy Technologies [M]. Cham: Springer, 2016
6 Jin H J, Weissmüller J, Farkas D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts [J]. MRS Bull., 2018, 43(1): 35
doi: 10.1557/mrs.2017.302
7 Fujita T. Diversity of nanoporous metals [J]. Metals, 2019, 9(9):996
doi: 10.3390/met9090996
8 Hadden M, Martinez-Martin D, Yong K T, et al. Recent advancements in the fabrication of functional nanoporous materials and their biomedical applications [J]. Materials (Basel), 2022, 15(6): 2111
doi: 10.3390/ma15062111
9 Gan Y X, Zhang Y P, Gan J B. Nanoporous metals processed by dealloying and their applications [J]. AIMS Mater. Sci., 2018, 5(6):1141
10 Zheng M, Yang J, Zhang H. Review on preparation and applications of porous metal materials [J]. Mater. Rep., 2022, 36(18): 78
10 郑 敏, 杨 瑾, 张 华. 多孔金属材料的制备及应用研究进展 [J]. 材料导报, 2022, 36(18): 78
11 Diao G L, Guo X X, Li X. Progresses of research on metallic nanoporous materials [J]. J. Univ. Sci. Technol. Liaoning, 2018, 41(6):401
11 刁桂林, 郭轩轩, 李 雪. 纳米多孔金属材料的研究进展 [J]. 辽宁科技大学学报, 2018, 41(6): 401
12 Li Y W, Zhang M, Wang X J, et al. Research progress in preparation and mechanical properties of nanoporous metals [J]. J. Aeronaut. Mater., 2018, 38(5): 10
12 李元伟, 张 猛, 王小健 等. 纳米多孔金属的制备方法及其力学性能的研究进展 [J]. 航空材料学报, 2018, 38(5): 10
13 Juarez T, Biener J, Weissmüller J, et al. Nanoporous metals with structural hierarchy: a review [J]. Adv. Eng. Mater., 2017, 19(12): 1700389
doi: 10.1002/adem.v19.12
14 Qiu H J, Peng L, LI X, et al. Using corrosion to fabricate various nanoporous metal structures [J]. Corros. Sci., 2015, 92: 16
doi: 10.1016/j.corsci.2014.12.017
15 Mokhtari M. FeCr composites: from metal/metal to metal/polymer via micro/nano metallic foam, exploitation of liquid metal dealloying process [D]. Sendai: Université de Lyon, 2019
16 He J, Zhao J Z. Microstructures of rapidly solidified Cu-Fe immiscible alloy [J]. Acta Metall. Sin., 2005, 41: 407
16 何 杰, 赵九洲. 快速凝固Cu-Fe难混溶合金的显微组织 [J]. 金属学报, 2005, 41: 407
17 He J, Zhao J Z, Li H L, et al. Directional solidification and microstructural refinement of immiscible alloys [J]. Metall. Mater. Trans., 2008, 39A(5) : 1174
18 Chen B, He J, Sun X J, et al. Liquid-liquid phase separation of Fe-Cu-Pb alloy and its application in metal separation and recycling of waste printed circuit boards [J]. Acta Metall. Sin., 2019, 55(6):751
doi: 10.11900/0412.1961.2018.00486
18 陈 斌, 何 杰, 孙小钧 等. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收 [J]. 金属学报, 2019, 55(6): 751
19 Zhao J Z, Jiang H X, Sun Q, et al. Progress of research on solidification process and microstructure control of immiscible alloys [J]. Mater. China, 2017, 36(4): 12
19 赵九洲, 江鸿翔, 孙 倩 等. 偏晶合金凝固过程及凝固组织控制方法研究进展 [J]. 中国材料进展, 2017, 36(4): 12
20 Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt [J]. Mater. Lett., 2011, 65(7): 1076
doi: 10.1016/j.matlet.2011.01.054
21 He J, Zhao J Z, Li H Q. Kinetics of liquid-liquid phase transformation in Cu-based alloys with a metastable miscibility gap [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(12): 1348
21 何 杰, 赵九洲, 李海权. Cu基亚稳难混溶合金液-液相变 [J]. 北京科技大学学报, 2008, 30(12): 1348
22 He J, Zhao J Z, Wang X F. An experimental study of the rapid continuous solidification of Al-Bi immiscible alloy [J]. Acta Metall. Sin., 2006, 42: 67
22 何 杰, 赵九洲, 王晓峰. Al-Bi难混溶合金快速连续凝固的实验研究 [J]. 金属学报, 2006, 42: 67
23 He J, Kaban I, Mattern N, et al. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation [J]. Sci. Rep., 2016, 6: 25832
doi: 10.1038/srep25832 pmid: 27181922
24 Zhao J Z, Ratke L, Feuerbacher B. Microstructure evolution of immiscible alloys during cooling through the miscibility gap [J]. Modell. Simul. Mater. Sci., 1998, 6(2): 123
doi: 10.1088/0965-0393/6/2/003
25 Lu W Q, Zhang S G, Zhang W, et al. Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al-10 wt.% Bi immiscible alloy [J]. Scr. Mater., 2015, 102: 19
doi: 10.1016/j.scriptamat.2015.02.004
26 Geslin P A, Mccue I, Gaskey B, et al. Topology-generating interfacial pattern formation during liquid metal dealloying [J]. Nat. Commun., 2015, 6: 8887
doi: 10.1038/ncomms9887
27 Mccue I, Karma A, Erlebacher J. Pattern formation during electrochemical and liquid metal dealloying [J]. MRS Bull., 2018, 43(1):27
doi: 10.1557/mrs.2017.301
28 Lai L H, Geslin P A, Karma A. Microstructural pattern formation during liquid metal dealloying: Phase-field simulations and theoretical analyses [J]. Phys. Rev. Mater., 2022, 6: 093803
29 Lai L H, Gaaskey B, Chuang A, et al. Topological control of liquid-metal-dealloyed structures [J]. Nat. Commun., 2022, 13(1): 2918
doi: 10.1038/s41467-022-30483-5 pmid: 35614044
30 Geslin P A, Buchet M, Wada T, et al. Phase-field investigation of the coarsening of porous structures by surface diffusion [J]. Phys. Rev. Mater., 2019, 3(8): 083401
31 Mccue I, Gaskey B, Geslin P A, et al. Kinetics and morphological evolution of liquid metal dealloying [J]. Acta Mater., 2016, 115: 10
doi: 10.1016/j.actamat.2016.05.032
32 Tsuda M, Wada T, Kato H. Kinetics of formation and coarsening of nanoporous α-titanium dealloyed with Mg melt [J]. J. Appl. Phys., 2013, 114(11): 113503
doi: 10.1063/1.4821066
33 Kim J W, Tsuda M, Wada T, et al. Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors [J]. Acta Mater., 2015, 84: 497
doi: 10.1016/j.actamat.2014.11.002
34 Wada T, Yubuta K, Kato H. Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction [J]. Scr. Mater., 2016, 118: 33
doi: 10.1016/j.scriptamat.2016.03.008
35 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
36 Joo S H, Wada T, Kato H. Development of porous FeCo by liquid metal dealloying: Evolution of porous morphology and effect of interaction between ligaments and melt [J]. Mater. Des., 2019, 180: 107908
doi: 10.1016/j.matdes.2019.107908
37 Wada T, Kato H. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel [J]. Scr. Mater., 2013, 68(9):723
doi: 10.1016/j.scriptamat.2013.01.011
38 Okulov I V, Lamaka S V, Wada T, et al. Nanoporous magnesium [J]. Nano Res., 2018, 11(12): 6428
doi: 10.1007/s12274-018-2167-9
39 Okulov I V, Okulov A V, Soldatov I V, et al. Open porous dealloying-based biomaterials as a novel biomaterial platform [J]. Mater. Sci. Eng., 2018, 88C: 95
40 Wada T, Setyawan A D, Yubuta K, et al. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt [J]. Scr. Mater., 2011, 65(6): 532
doi: 10.1016/j.scriptamat.2011.06.019
41 Okulov A V, Volegov A S, Weissmüller J, et al. Dealloying-based metal-polymer composites for biomedical applications [J]. Scr. Mater., 2018, 146: 290
doi: 10.1016/j.scriptamat.2017.12.022
42 Okulov I V, Weissmüller J, Markmann J. Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone [J]. Sci. Rep., 2017, 7(1): 20
doi: 10.1038/s41598-017-00048-4 pmid: 28154414
43 Mokhtari M, Le Bourlot C, Adrien J, et al. Cold-rolling influence on microstructure and mechanical properties of NiCr-Ag composites and porous NiCr obtained by liquid metal dealloying [J]. J. Alloys Compd., 2017, 707: 251
doi: 10.1016/j.jallcom.2016.12.105
44 Berger S A, Okulov I V. Open porous α+β titanium alloy by liquid metal dealloying for biomedical applications [J]. Metals, 2020, 10(11): 1450
doi: 10.3390/met10111450
45 Mokhtari M, Wada T, Le Bourlot C, et al. Low cost high specific surface architectured nanoporous metal with corrosion resistance produced by liquid metal dealloying from commercial nickel superalloy [J]. Scr. Mater., 2019, 163: 5
doi: 10.1016/j.scriptamat.2018.12.023
46 Mokhtari M, Wada T, Le Bourlot C, et al. Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800 [J]. Corros. Sci., 2020, 166: 108468
doi: 10.1016/j.corsci.2020.108468
47 Joo S H, Bae J W, Park W Y, et al. Beating thermal coarsening in nanoporous materials via high-entropy design [J]. Adv. Mater., 2020, 32(6): 1906160
doi: 10.1002/adma.v32.6
48 Okulov A V, Joo S H, Kim H S, et al. Nanoporous high-entropy alloy by liquid metal dealloying [J]. Metals, 2020, 10(10): 1396
doi: 10.3390/met10101396
49 Song R R, Han J H, Okugawa M, et al. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production [J]. Nat. Commun., 2022, 13(1): 5157
doi: 10.1038/s41467-022-32768-1 pmid: 36055985
50 Wada T, Ichitsubo T, Yubuta K, et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process [J]. Nano Lett., 2014, 14(8): 4505
doi: 10.1021/nl501500g pmid: 24988470
51 Yu S G, Yubuta K, Wada T, et al. Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid [J]. Carbon, 2016, 96: 403
doi: 10.1016/j.carbon.2015.09.093
52 Zhao C H, Wada T, De Andrade V, et al. Three-dimensional morphological and chemical evolution of nanoporous stainless steel by liquid metal dealloying [J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 34172
doi: 10.1021/acsami.7b04659
53 Wada T, Geslin P A, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying [J]. Scr. Mater., 2018, 142: 101
doi: 10.1016/j.scriptamat.2017.08.038
54 Jin H J, Weissmüller J. Bulk nanoporous metal for actuation [J]. Adv. Eng. Mater., 2010, 12(8): 714
doi: 10.1002/adem.200900329
55 Chen Q, Ding Y, Chen M W. Nanoporous metal by dealloying for electrochemical energy conversion and storage [J]. MRS Bull., 2018, 43(1): 43
doi: 10.1557/mrs.2017.300
56 Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying [J]. Scr. Mater., 2007, 56(11): 1003
doi: 10.1016/j.scriptamat.2007.01.046
57 Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical behavior of nanoporous Au [J]. Nano Lett., 2006, 6(10): 2379
pmid: 17034115
58 Guo X Y, Zhang C X, Tian Q H, et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review [J]. Mater. Today Commun., 2021, 26: 102007
59 Okulov I V, Okulov A V, Volegov A S, et al. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters [J]. Scr. Mater., 2018, 154: 68
doi: 10.1016/j.scriptamat.2018.05.029
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.