Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 625-632    DOI: 10.11901/1005.3093.2022.493
  研究论文 本期目录 | 过刊浏览 |
喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题
刘继浩1,2, 迟宏宵1(), 武会宾2, 马党参1, 周健1, 徐辉霞3
1.钢铁研究总院有限公司 特殊钢研究院 北京 100081
2.北京科技大学 钢铁共性技术协同创新中心 北京 100083
3.天工爱和特钢有限公司 丹阳 212312
Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel
LIU Jihao1,2, CHI Hongxiao1(), WU Huibin2, MA Dangshen1, ZHOU Jian1, XU Huixia3
1.Institute for Special Steels, Center Iron and Steel Research Institute Co., Beijing 100081, China
2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
3.Tiangong Aihe Special Steel Co. Ltd., Danyang 212312, China
引用本文:

刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
Jihao LIU, Hongxiao CHI, Huibin WU, Dangshen MA, Jian ZHOU, Huixia XU. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. Chinese Journal of Materials Research, 2023, 37(8): 625-632.

全文: PDF(13422 KB)   HTML
摘要: 

对喷射成形M3高速钢进行不同制度的热处理,使用OM、SEM、TEM、EDS、XRD以及硬度测试等手段研究了这种钢在淬、回火过程中的组织和硬度变化以及硬度偏低问题。结果表明,随着淬火温度的提高组织中的M6C型碳化物百分占比呈降低的趋势,而MC型碳化物的百分占比只有在淬火温度高于1200℃时才稍有降低;在淬火温度不高于1230℃的条件下仍能保证组织中碳化物尺寸细小且均匀分布。组织中的MC型碳化物成分分布的不均匀与其生成和工艺的雾化过程相关。随着淬火温度由1200℃提高到1230℃,钢的回火硬度显著提高。淬火温度的提高使MC型碳化物的溶解量提高,可有效解决喷射成形高速钢硬度偏低的问题。

关键词 金属材料喷射成形高速钢热处理硬度    
Abstract

Spray forming is a casting process, by which the molten metal is directly converted to a solid bulk with unique characteristics. When used in the production of high speed steel, spray forming materials typically present microstructures composed of refined polygonal grains, uniformly distributed carbides and low levels of micro and macro-segregation. The mechanical properties of the spray forming high speed steel are usually between ones made by powder metallurgy, casting and wrought. It can be considered as a cost saving alternative for large-scale industrial production of high-speed steels. But for high-speed steel produced by spray forming, its shortcomings can't be ignored: i.e. once being subjected to the same heat treatment, compared with the steels made by PM and CW process, the spray forming one often shows lower hardness. Focusing on the solution of aforementioned disadvantages, the effect of different heat treatments on the microstructural evolution and hardness variation was assessed for the spray forming M3 high-speed steel, and the adopted heat treatment involved quenching and tempering at different temperatures separately. Meanwhile the reasons for the low hardness of the spray-formed M3 high-speed steel were also discussed. The results show that SF M3 high speed steel quenched below 1230℃ can still ensure relatively fine grain size and uniform size distribution of carbide particles; Setting the tempering at 560℃, in case the quenching temperature raises from 1200℃ to 1230℃, after being quenched + tempered, the hardness of spray-formed M3 high-speed steel can be greatly improved. It is believed that the low hardness issue may be ascribed to the fact: the formation of a large number of MC type carbides with inhomogeneous composition in the spray forming atomization stage, the MC type carbides can't be fully dissolved in the steel matrix when quenching at lower temperature during the heat treatment process, resulting in insufficient amount of carbon and alloying elements in the matrix. Therefore, the low hardness issue is caused by the inability to fully exert the secondary hardening effect.

Key wordsmetallic materials    spray forming M3 high speed steel    heat treatment    hardness
收稿日期: 2022-09-09     
ZTFLH:  TG142.7  
通讯作者: 迟宏宵,高级工程师,chihongxiao@163.com,研究方向为工模具钢材料
Corresponding author: CHI Hongxiao, Tel: (010)62182268, E-mail:chihongxiao@163.com
作者简介: 刘继浩,男,1992年生,博士生
图1  喷射成形M3高速钢边部的组织
图2  退火态喷射成形M3高速钢的XRD谱
PositionsWMoCrFeV
134.4126.553.4333.062.55
212.9715.145.443.0863.38
339.5826.574.2426.834.98
419.1420.694.614.5051.07
表2  图1b中1~4处的EDS分析结果
图3  淬火温度不同的喷射成形M3高速钢的XRD谱
图4  淬火温度不同的钢中碳化物的形貌及统计结果
图5  EDS面扫描合金元素分布及MC型碳化物线扫描元素分布
图6  淬回火温度不同的钢的硬度变化
图7  析出相的形貌及位相关系
图8  用喷射成形和铸锻制备的M3高速钢在不同温度淬火后硬度的对比
图9  在不同温度下W、Mo、V合金元素的扩散曲线
1 Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
2 Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials [J]. Acta Metall. Sin., 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
2 魏世忠, 徐流杰. 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
3 Zhou X F, Fang F, Tu Y Y, et al. Effect of aluminum on the solidification microstructure of M2 high speed steel [J]. Acta Metall. Sin., 2014, 50: 769
doi: 10.3724/SP.J.1037.2013.00621
3 周雪峰, 方 峰, 涂益友 等. Al对M2高速钢凝固组织的影响 [J]. 金属学报, 2014, 50: 769
doi: 10.3724/SP.J.1037.2013.00621
4 Feng M J, Wang E G, Zhang X W, et al. High speed steel composite roll manufactured by electromagnetism continuous casting [J]. Rare Met. Mater. Eng., 2012, 41: 1487
4 冯明杰, 王恩刚, 张兴武 等. 电磁连续铸造法制备高速钢复合轧辊 [J]. 稀有金属材料与工程, 2012, 41: 1487
5 Luo Y W, Guo H J, Sun X L. Precipitation behaviors of carbides in M42 high speed steel during ESR and forging [J]. Iron Steel, 2017, 52: 68
5 罗乙娲, 郭汉杰, 孙晓林. M42高速钢电渣重熔及锻造退火后碳化物的析出 [J]. 钢铁, 2017, 52: 68
6 Sun H X, Chen C G, Zhang Z W, et al. PM high speed steel with high performance manufactured by super-fine powder with low oxygen content [J]. Rare Met. Mater. Eng., 2019, 48(10): 3246
6 孙海霞, 陈存广, 张振威 等. 低氧超细粉末制备高性能粉末高速钢 [J]. 稀有金属材料与工程, 2019, 48(10): 3246
7 Cui C S, Zhang J G. Research progress of spray forming technology for the manufacture of high performance iron and steel materials (I) principle, characteristics and development status [J]. Shanghai Met., 2012, 34: 42
7 崔成松, 章靖国. 喷射成形快速凝固技术制备高性能钢铁材料的研究进展(一)——喷射成形技术的原理、特点及发展现状 [J]. 上海金属, 2012, 34: 42
8 Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels [J]. Metall. Mater. Trans., 2016, 47A: 842
9 Mesquita R A, Barbosa C A. Spray forming high speed steel—properties and processing [J]. Mater. Sci. Eng., 2004, 383A: 87
10 Ernst I C, Duh D. ESP4 and TSP4, A comparison of spray formed with powdermetallurgically produced cobalt free high-speed steel of type 6W-5Mo-4V-4Cr [J]. J. Mater. Sci., 2004, 39: 6831
doi: 10.1023/B:JMSC.0000045613.54700.35
11 Wang H B, Hou L G, Zhang J X, et al. Microstructures and properties of spray formed Nb-containing M3 high speed steel [J]. Acta Metall. Sin., 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
11 王和斌, 侯陇刚, 张金祥 等. 喷射成形含铌M3型高速钢组织与性能研究 [J]. 金属学报, 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
12 Zhao S L. Research of microstructure and properties of spray formed high alloyed high speed steel [D]. Shanghai: Shanghai University, 2007
12 赵顺利. 喷射成形高合金高速钢的组织与性能研究 [D]. 上海: 上海大学, 2017
13 Liu B W. Optimization of alloy composition and properties of high speed steel fabricated by powder metallurgy [D]. Beijing: University of Science & Technology Beijing, 2020
13 刘博文. 粉末冶金高速钢合金成分及性能优化 [D]. 北京: 北京科技大学, 2020
14 Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel [J]. J. Iron Steel Res. Int., 2017, 24: 43
doi: 10.1016/S1006-706X(17)30007-9
15 Ding P D, Shi G Q, Zhou S Z. As-cast carbides in high-speed steels [J]. Metall. Mater. Trans., 1993, 24A: 1265
16 Chi H X, Ma D S, Xu H X, et al. Effect of solidification rate on as-cast microstructure of M2 high speed steel [J]. Trans. Mater. Heat Treat., 2017, 38: 94
16 迟宏宵, 马党参, 徐辉霞 等. 凝固速率对M2高速工具钢铸态组织的影响 [J]. 材料热处理学报, 2017, 38: 94
17 Zhou X F, Fang F, Jiang J Q, et al. Study on decomposition behaviour of M2C eutectic carbide in high speed steel [J]. Mater. Sci. Technol., 2012, 28: 1499
doi: 10.1179/1743284712Y.0000000081
18 Veerababu R, Satya Prasad K, Karamched P S, et al. Austenite stability and M2C carbide decomposition in experimental secondary hardening ultra-high strength steels during high temperature austenitizing treatments [J]. Mater. Charact., 2018, 144: 191
doi: 10.1016/j.matchar.2018.07.013
19 Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment [J]. Mater. Sci. Technol., 2014, 30: 116
doi: 10.1179/1743284713Y.0000000338
20 Li Y J, Jiang Q C, Zhao Y G, et al. A dynamic study on the spheroidizing of eutectic carbide in the modified M2 steel [J]. Acta Metall. Sin., 1999, 35: 207
20 李彦军, 姜启川, 赵宇光 等. 变质M2高速钢中共晶碳化物加热团球化的动力学研究 [J]. 金属学报, 1999, 35: 207
21 Zhang Q K, Jiang Y, Shen W J, et al. Direct fabrication of high-performance high speed steel products enhanced by LaB6 [J]. Mater. Des., 2016, 112: 469
doi: 10.1016/j.matdes.2016.09.044
22 Godec M, Batič B Š, Mandrino D, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel [J]. Mater. Charact., 2010, 61: 452
doi: 10.1016/j.matchar.2010.02.003
23 Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy [J]. Mater. Sci. Forum, 2005, 498-499: 244
doi: 10.4028/www.scientific.net/MSF.498-499
24 Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans. A, 1998, 29: 1395
doi: 10.1007/s11661-998-0354-0
25 Fischmeister H F, Karagöz S, Andrén H O. An atom probe study of secondary hardening in high speed steels [J]. Acta Metall., 1988, 36: 817
doi: 10.1016/0001-6160(88)90136-8
26 Moon H K, Lee K B, Kwon H. Influences of Co addition and austenitizing temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W-Mo-Cr-V(-Co) system [J]. Mater. Sci. Eng., 2008, 474A: 328
27 Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel [J]. Scr. Mater., 1998, 39: 1133
doi: 10.1016/S1359-6462(98)00270-X
28 Kumar K S, Lawley A, Koczak M J. Powder metallurgy T15 tool steel: Part I. Characterization of powder and hot isostatically pressed material [J]. Metall. Trans., 1991, 22A: 2733
29 Hu B F, Li H Y, Zhang S H, et al. Stabilization of non-equilibrium carbides in powder superalloy Rene 95 [J]. Acta Metall. Sin., 1991, 27: 131
29 胡本芙, 李慧英, 章守华 等. 粉末高温合金中亚稳碳化物稳定化处理 [J]. 金属学报, 1991, 27: 131
30 Serna M M, Rossi J L. MC complex carbide in AISI M2 high-speed steel [J]. Mater. Lett., 2009, 63: 691
doi: 10.1016/j.matlet.2008.11.035
31 Ghomashchi M R. Quantitative microstructural analysis of M2 grade high speed steel during high temperature treatment [J]. Acta Mater., 1998, 46: 5207
doi: 10.1016/S1359-6454(98)00110-4
32 Yong Q L, Yan S G, Pei H Z, et al. Physical metallurgical data of vanadium in steel [J]. J. Iron Steel Res., 1998, 10: 67
32 雍岐龙, 阎生贡, 裴和中 等. 钒在钢中的物理冶金学基础数据 [J]. 钢铁研究学报, 1998, 10: 67
33 Pan Y, Pi Z Q, Liu B W, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5-Cr4V2Co5Nb (825 K) high speed steel [J]. Mater. Sci. Eng., 2020, 787A: 139480
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[10] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
[15] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.