Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 535-542    DOI: 10.11901/1005.3093.2022.417
  研究论文 本期目录 | 过刊浏览 |
镍基高温合金GH3536带箔材的再结晶与晶粒长大行为
王昊1,2, 崔君军1,2, 赵明久1,2()
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536
WANG Hao1,2, CUI Junjun1,2, ZHAO Mingjiu1,2()
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
Hao WANG, Junjun CUI, Mingjiu ZHAO. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. Chinese Journal of Materials Research, 2023, 37(7): 535-542.

全文: PDF(11098 KB)   HTML
摘要: 

用光学显微镜(OM)、扫描电镜(SEM)及X射线衍射分析(XRD)等手段表征不同厚度的冷轧态GH3536微米尺度带箔材退火后的显微组织和结构特征,研究这种材料的再结晶和晶粒长大的规律。结果表明,冷轧变形后的GH3536带箔材的晶粒组织呈线条状,其主相为γ相;建立了厚度为200、100和50 μm的GH3536带箔材在1050~1150℃退火10~60 min的晶粒长大方程,得到晶粒长大的激活能分别为Q200 μm=800.34 kJ/mol,Q100 μm=609.50 kJ/mol,Q50 μm=314.79 kJ/mol。厚度较小的GH3536带箔材其晶粒长大激活能也较小,晶粒更容易长大。影响晶粒长大的因素与变形程度和析出相颗粒有关。

关键词 金属材料镍基高温合金带箔材再结晶晶粒长大行为    
Abstract

The microstructure and crystallographic structure characteristics of as cold-rolled strip and foil with different thicknesses of GH3536 alloy after annealing was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD) to get an insight into the recrystallization and grain growth behavior. The results show that the cold rolled strip and foil of GH3536 alloy show a microstructure composed of elongated grains along the rolling directions, and its main phase was γ. The grain growth equations of the strip and foil with thicknesses of 200,100 and 50 μm annealed at 1050~1150℃ for 10~60 min were established respectively, and the relevant activation energies were acquired as follows: Q200 μm=800.34 kJ/mol, Q100 μm=609.50 kJ/mol and Q50 μm=314.79 kJ/mol. The activation energy of the thinner strip and foil was smaller, and the grain growth was more prone to occur. The main factors affecting the grain growth were related to deformation degree and precipitated particles.

Key wordsmetallic materials    Ni-base superalloy    strip and foil    recrystallization    grain growth behaviors
收稿日期: 2022-07-28     
ZTFLH:  TG132.32  
基金资助:国家自然科学基金委员会与中国工程物理研究院联合基金(U1730140)
通讯作者: 赵明久,研究员,mjzhao@imr.ac.cn, 研究方向为特种合金带箔材
Corresponding author: ZHAO Mingjiu, Tel: (024)23975662, E-mail:mjzhao@imr.ac.cn
作者简介: 王昊,男,1997年生,硕士生
ElementsCCrFeWMnCoMoNi
Content0.07321.5717.760.670.371.728.77Bal.
表1  实验用GH3536带箔材的化学成分
图1  不同厚度轧制态GH3536带箔材的表面形貌
图2  200 μm厚GH3536带箔材的微观结构和SEM-EDS化学分析
ElementsNiCrFeMoCWSi
Matrix45.522.018.16.76.70.80.2
Particle19.116.48.041.311.23.20.9
表2  200 μm厚轧制态GH3536带箔材基体和颗粒物的EDS分析结果
图3  不同厚度轧制态GH3536带箔材的XRD谱
图4  三种厚度的GH3536带箔材在不同温度退火后的金相组织
图5  不同厚度GH3536带箔材在1150℃保温20 min后的XRD谱
图6  GH3536带箔材的lnt-lnD折线图
Temperature / ℃200 μm100 μm50 μm
1050-D=0.583t0.3387D=0.736t0.2936
1080D=0.761t0.3495D=0.374t0.4241D=0.732t0.3204
1100D=1.412t0.2864D=3.962t0.1477D=1.348t0.2700
1150D=22.88t0.1601D=18.58t0.1724D=4.871t0.2785
表3  GH3536带箔材的晶粒长大方程
图7  GH3536带箔材的1000/T-lnK折线图
图8  不同厚度GH3536带箔材在1050℃退火后的背散射电子像
图9  100 μm厚GH3536的TEM形貌和析出相的电子衍射图
1 Lai G Y. An investigation of the thermal stability of a commercial Ni-Cr-Fe-Mo alloy (hastelloy alloy X) [J]. Metall. Trans., 1978, 9A: 827
2 Aghaie-Khafri M, Golarzi N. Forming behavior and workability of Hastelloy X superalloy during hot deformation [J]. Mater. Sci. Eng., 2008, 486A: 641
3 Osada T, Nagashima N, Gu Y F, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scripta Mater., 2011, 64(9): 892
doi: 10.1016/j.scriptamat.2011.01.027
4 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power., 2006, 22(2): 361
5 Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51(19): 5775
doi: 10.1016/j.actamat.2003.08.023
6 Chen W, Zhang Y, Ding Y, et al. Size effect of tensile property for ultrathin 304 stainless steel [J]. Int. J. Plast. Eng., 2014, 21(6): 71
7 Guo B, Zhou J, Shan D B, et al. Size effects of yield strength of brass foil in tensile test [J]. Acta Metall. Sin., 2008, 44(4): 419
8 Stölken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Acta Mater., 1998. 46(14): 5109
doi: 10.1016/S1359-6454(98)00153-0
9 Li H Z, Dong X H, Wang Q, et al. Size effects of CuZn37 brass foil in microforming [J]. Mater. Sci. Technol., 2011, 19(4): 15
9 李河宗, 董湘怀, 王 倩 等. CuZn37黄铜板料微塑性成形中的尺寸效应研究 [J]. 材料科学与工艺, 2011, 19 (4):15
10 Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49(13): 2567
doi: 10.1016/S1359-6454(01)00062-3
11 Lederer M, Gröger V, Khatibi G, et al. Size dependency of mechanical properties of high purity aluminium foils [J]. Mater. Sci. Eng., 2010, 527A(3) : 590
12 Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales [J]. Int. J. Mach. Tools Manuf., 2008, 48(9): 1014
doi: 10.1016/j.ijmachtools.2008.01.006
13 James L A. The effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature [J]. Eng. Fract. Mech., 1986, 25(3): 305
doi: 10.1016/0013-7944(86)90127-X
14 Jiang R, Everitt S, Lewandowski M, et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes [J]. Int. J. Fatigue, 2014, 62: 217
doi: 10.1016/j.ijfatigue.2013.07.014
15 Zhao X Y, Liu Y, Wang Y, et al. Recrystallization behaviors of 316L stainless steel fiber with different diameters [J]. Mater. Sci. Eng. Powder Metall., 2013, 18(5): 631
15 赵秀云, 刘 咏, 王 岩 等. 不同丝径316L不锈钢纤维的再结晶行为 [J]. 粉末冶金材料科学与工程, 2013, 18(5): 631
16 Zhang C H, Xue S B, Xiao G Z, et al. Research status of micron rare metal foil [J]. Mater. Rep., 2020, 34(13): 13139
16 张聪惠, 薛少博, 肖桂枝 等. 微米级稀有金属箔材研究现状 [J]. 材料导报, 2020, 34(13): 13139
17 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Holland: Elsevier, 1995: 2
18 Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum [J]. Phys. Rev. J. Arch., 1947, 71(8): 555
19 Hu H, Rath B B. On the time exponent in isothermal grain growth [J]. Metall. Mater. Trans., 1970, 1B: 3181
20 Palai P, Prabhu N, Hodgson P D, et al. Grain growth and β-Mg17Al12 intermetallic phase dissolution during heat treatment and its impact on deformation behavior of AZ80 Mg-alloy [J]. J. Mater. Eng. Perform., 2014, 23(1): 77
doi: 10.1007/s11665-013-0722-9
21 Humphreys F J. Particle stimulated nucleation of recrystallization at silica particles in nickel [J]. Scripta Mater., 2000, 43(7): 591
doi: 10.1016/S1359-6462(00)00442-5
22 Nes E. The effect of a fine particle dispersion on heterogeneous recrystallization [J]. Acta Metall., 1976, 24(5): 391
doi: 10.1016/0001-6160(76)90059-6
23 McQueen H J, Evangelista E, Bowles J, et al. Hot deformation and dynamic recrystallization of Al-5Mg-0.8Mn alloy [J]. Metal. Sci., 1984, 18(8): 395
doi: 10.1179/030634584790419854
24 Humphreys F J. The nucleation of recrystallization at second phase particles in deformed aluminium [J]. Acta Metall., 1977, 25(11): 1323
doi: 10.1016/0001-6160(77)90109-2
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
[15] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.