Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 685-696    DOI: 10.11901/1005.3093.2022.341
  研究论文 本期目录 | 过刊浏览 |
C含量对VCoNi中熵合金微观组织和性能的影响
幸定琴1, 涂坚1,2,3(), 罗森1, 周志明1,2
1.重庆理工大学材料科学与工程学院 重庆 400054
2.重庆理工大学重庆市模具技术重点实验室 重庆 400054
3.重庆材料研究院有限公司 重庆 400707
Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys
XING Dingqin1, TU Jian1,2,3(), LUO Sen1, ZHOU Zhiming1,2
1.College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3.Chongqing Materials Research Institute Co. Ltd., Chongqing 400707, China
引用本文:

幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
Dingqin XING, Jian TU, Sen LUO, Zhiming ZHOU. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. Chinese Journal of Materials Research, 2023, 37(9): 685-696.

全文: PDF(37357 KB)   HTML
摘要: 

在VCoNi中熵合金中添加间隙碳(C)原子制备出(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8),系统研究了C含量对其微观组织、力学性能以及摩擦磨损性能的影响。结果表明,当C含量为0~1时,随着C含量的提高,均匀态和再结晶态样品的晶粒尺寸均减小,第二相颗粒的含量提高;均匀态样品的织构逐渐向α取向线上聚集,而再结晶态织构均在α线上聚集,且织构最强点均在α取向线上。当C含量为1~2.8时,均匀态样品中出现粗大的胞晶,第二相以棒状和颗粒状并存,退火孪晶减少,未出现典型的织构类型。当C含量为0.1时再结晶态样品的强韧化性能最优,可归因于细晶强化、间隙强化和第二相强化。加入C原子使再结晶样品的摩擦磨损性能提高,可归因于磨粒磨损减弱,而粘着磨损和氧化磨损增强。

关键词 金属材料中熵合金微观组织织构力学性能摩擦磨损    
Abstract

VCoNi medium entropy alloy (MEA) with severe lattice distortion has good strength and toughness. In this work, the MEAs (VCoNi)100-x C x (x=0, 0.1, 0.4, 1 and 2.8) were repaired by the following processes: the mixture of alloy powders was melted per vacuum non-consumable arc melting furnace; Then the as-cast alloy was subjected to thermal compression deformation (45% deformation) after being heated at 1000℃ for 2 h; further rolling deformation at room temperature (70% deformation); which was finally heated at 1000℃ for 1 min followed by water quenching to acquire the recrystallized alloys. Then the effect of different C additions on the microstructure, mechanical and wear properties of the MEAs was systematically studied via SEM with EDS and EBSD, universal tensile testing machine and pin/disc wear tester. The results show that when the C content is between 0 and 1, with the increase of C content, the grain size of both the homogenized and recrystallized EMAs decrease, while the amount of second phase particles increases. For the homogenized EMAs, textures converge gradually toward the ɑ-orientation; while for recrystallized EMAs, textures converge on the-orientation, where is the strongest point of the textures also situated. When the C content is between 1 and 2.8, coarse cellular grains emerge in the homogenized EMAs, while the second phases precipitate as coexisting rods and particulates, however the annealing twinning is sharply reduced, and no typical texture type exists. The tensile test results show that (VCoNi)99.9C0.1 exhibits an optimal strength-ductility balance, which may be attributed to the appropriate size and distribution of the particles, resulting in fine grain strengthening, interstitial strengthening and particles strengthening. The friction and wear test results show that the wear property of the EMAs is improved due to the C addition, which is mainly attributed to the weakened abrasive wear mechanism and the enhanced adhesive and oxidative wear mechanisms. Therefore, the addition of appropriate amount of C is conducive to optimize the microstructure of (VCoNi)MEA and further improve the mechanical and wear properties.

Key wordsmetallic materials    medium entropy alloy    microstructure    texture    mechanical property    wear property
收稿日期: 2022-06-21     
ZTFLH:  TG139  
基金资助:重庆理工大学科研项目(KLA22007)
通讯作者: 涂 坚,副教授,tujian@cqut.edu.cn,研究方向为高熵合金组织与性能
Corresponding author: TU Jian, Tel: (023)62563178, E-mail: tujian@cqut.edu.cn
作者简介: 幸定琴,女,1998年生,硕士生
图1  (VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的相含量随温度的变化
图2  均匀态(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的SEM照片
图3  均匀态(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的EDS面扫分布
图4  均匀态(VCoNi)100-x C x (x=0, 0.1, 0.4, 1和2.8)的EBSD图
图5  均匀态(VCoNi)100-x C x (x=0, 0.1, 0.4, 1和2.8)的ODF图(φ2=45°、65°和90°截面)
图6  均匀态样品中主要织构组分的体积分数随C含量的变化
图7  再结晶态(VCoNi)100-x C x (x=0, 0.1和0.4)的SEM照片
图8  再结晶态(VCoNi)100-x C x (x=0, 0.1和0.4)的EBSD图
图9  再结晶态(VCoNi)100-x C x (x=0, 0.1和0.4)的ODF图(φ2=45°、65°和90°截面)
图10  再结晶态样品中主要织构组分的体积分数随C含量的变化
图11  再结晶态(VCoNi)100-x C x (x=0, 0.1和0.4)的室温拉伸曲线和断口形貌

Yield Strength

/ MPa

Ultimate tensile strength

/ MPa

Elongation

/ %

C0528.301003.2954.23
C0.1744.621193.8639.25
C0.4686.681130.2239.37
表1  (VCoNi)100-x C x 中熵合金的屈服强度、抗拉强度以及延伸率
图12  再结晶态(VCoNi)100-x C x (x=0, 0.1和0.4)的摩擦磨损性能和磨痕形貌
1 Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Mater. Res. Lett., 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
2 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
4 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mat. Sci. Eng. A-Struct., 2004, 375: 213
5 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
6 Lin Q, Liu J, An X, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy [J], Mater. Res. Lett., 2018(6): 236
7 Yang T, Guo W, Poplawsky J D, et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation [J], Acta Mater., 2020(188): 1
8 Schneider M, George E P, Manescau T J, et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy [J]. Int. J. Plast., 2020(124): 155
9 Nam S, Kim C, Kim Y M. Recent studies of the lasercladding of high entropy alloys [J]. J. Weld. & Join., 2017, 35(4): 58
10 Agustianingrum M P, Park N, Yoshida S, et al. Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy [J]. J. Alloy Compd., 2019(781): 866
11 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698
doi: 10.1016/j.intermet.2011.01.004
12 Lu C, Niu L, Chen N, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7(1): 13564
doi: 10.1038/ncomms13564
13 Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride -containing sulphate solutions [J]. Corros. Sci., 2010, 52(10): 3481
doi: 10.1016/j.corsci.2010.06.025
14 Svoboda J, Ecker W, Razumovskiy V I, et al. Kinetics of interaction of impurity interstitials with dislocations revisited [J]. Prog. Mater. Sci., 2019, 101: 172
doi: 10.1016/j.pmatsci.2018.10.001
15 Moon J, Jang M J, Bae J W, et al. Mechanical behavior and solid solution strengthening model for face-centered cubic single crystalline and polycrystalline high-entropy alloys [J]. Intermetallics, 2018, 98: 89
doi: 10.1016/j.intermet.2018.04.022
16 Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31(8): 8
17 Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
doi: 10.1016/j.actamat.2020.03.048
18 ChenY, Tu J, Zhang Y B, et al. Effect of deformation and annealing process on microstructural evolution of Fe47Mn30Co10Cr10B3 high entropy alloy [J]. Chin. J. Mater. Res., 2021, 35(2): 143
18 陈 扬, 涂 坚, 张琰斌 等. 形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响 [J]. 材料研究学报, 2021, 35(2): 143
19 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. U S A, 2018, 115(28): 7224
doi: 10.1073/pnas.1807817115
20 Shang Y Y, Wu Y, He J Y, et al. Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon [J]. Intermetallics, 2019, 106: 77
doi: 10.1016/j.intermet.2018.12.009
21 Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. J. Alloy Compd., 2017, 693: 394
doi: 10.1016/j.jallcom.2016.09.208
22 Wang Z W, Lu W J, Raabe D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. J. Alloy Compd., 2019, 781: 734
doi: 10.1016/j.jallcom.2018.12.061
23 Saha J, Bhattacharjee P P. Influences of Thermomechanical Processing by Severe Cold and Warm Rolling on the Microstructure, Texture, and Mechanical Properties of an Equiatomic CoCrNi Medium-Entropy Alloy [J]. J. Mater. Eng. Perform., 2021, 30(12): 8956
doi: 10.1007/s11665-021-06092-6
24 Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Alloy Compd., 2014, 587: 544
doi: 10.1016/j.jallcom.2013.10.237
25 Xiao J K, Tan H, Chen J, et al. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys [J]. J. Alloy Compd., 2020, 847: 156533
doi: 10.1016/j.jallcom.2020.156533
26 Liu J Z, Liu H X, Di Y N, et al. Effects of carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiC x high entropy alloy coatings [J]. China Surface Engineering, 2020, 33(6): 118
26 刘径舟, 刘洪喜, 邸英南 等. 碳含量对激光熔覆CoCrFeMnNiC x 熵合金涂层摩擦磨损和耐蚀性能的影响 [J]. 中国表面工程, 2020, 33(6): 118
27 Deng L, Bai C Y, Jiang Z T, et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy [J]. Mat. Sci. Eng. A, 2021, 822: 141642
doi: 10.1016/j.msea.2021.141642
28 Andersson J O, Helander T, Hoglund L H, et al. THERMO-CALC and DICTRA, computational tools for materials science [J]. Calphad, 2002, 26(2): 273
doi: 10.1016/S0364-5916(02)00037-8
29 Sathiaraj G D, Bhattacharjee P P. Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy [J]. Mater. Charact., 2015, 109: 189
doi: 10.1016/j.matchar.2015.09.027
30 Li Z Q, Wang J S, Huang H B. Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline [J]. J. Alloy Compd., 2020, 818: 10
31 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater, 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
32 Suzuki S, Abiko K, Kimura H. Chemical state of phosphorus segregated at grain boundaries in iron [J]. Transactions of the Iron and Steel Institute of Japan, 1983, 23(9): 746
doi: 10.2355/isijinternational1966.23.746
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.