|
|
|
| 改善09MnNi容器钢低温冲击韧性的机理 |
宁博1, 李志超1( ), 武会宾1, 张丙军2, 黄曼丽1, 丁超1 |
1.北京科技大学 钢铁共性技术协同创新中心 北京 100083 2.南京钢铁股份有限公司 南京 210035 |
|
| Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel |
NING Bo1, LI Zhichao1( ), WU Huibin1, ZHANG Bingjun2, HUANG Manli1, DING Chao1 |
1.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China 2.Nanjing Iron and Steel Co., Ltd., Nanjing 210035, China |
引用本文:
宁博, 李志超, 武会宾, 张丙军, 黄曼丽, 丁超. 改善09MnNi容器钢低温冲击韧性的机理[J]. 材料研究学报, 2022, 36(9): 660-666.
Bo NING,
Zhichao LI,
Huibin WU,
Bingjun ZHANG,
Manli HUANG,
Chao DING.
Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. Chinese Journal of Materials Research, 2022, 36(9): 660-666.
| 1 |
Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel [J]. Defect Diffusion Forum, 2011: 110
|
| 2 |
Zeng D F, Lu L T, Gong Y H, et al. Optimization of strength and toughness of railway wheel steel by alloy design [J]. Mater. Des., 2016, 92: 998
doi: 10.1016/j.matdes.2015.12.096
|
| 3 |
Wang C F, Wang M Q, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel [J]. J. Mater. Sci. Technol., 2007, 23(5): 659
|
| 4 |
Zhao Y J, Ren X P, Yang W C, et al. Design of a low-alloy high-strength and high-toughness martensitic steel [J]. Int. J. Min. Met. Mater., 2013, 20(8): 733
doi: 10.1007/s12613-013-0791-7
|
| 5 |
Reveka V N, Nesterenko V M. Toughness of steel 09G2S at low temperatures in relation to cleanness of grain boundaries [J]. Met. Sci. Heat Treat., 1975, 17(5): 434
doi: 10.1007/BF00663227
|
| 6 |
Sato K. Improving the toughness of ultrahigh strength steel[D]. Berkeley: University of California, Berkeley. 2002
|
| 7 |
Singh R K, Singh A K, Prasad N E. Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy [J]. Mat. Sci. Eng. A, 2000, 277(1-2): 114
doi: 10.1016/S0921-5093(99)00549-3
|
| 8 |
Shukla R, Ghosh S K, Chakrabarti D, et al. Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon microalloyed steel for pipeline application [J]. Mat. Sci. Eng. A, 2013, 587(18): 201
doi: 10.1016/j.msea.2013.08.054
|
| 9 |
Cai H L, Mou J S, Hou Z Y. Microstructure, texture and property of interstitial-Free (IF) steel after ultra-fast annealing [J]. Adv. Mater. Res., 2015, 1120-1121:1003
|
| 10 |
Koh Y H, Park No J, Choi J H. Texture and corrosion property in the hopeite crystal coated steel [J]. Mater. Sci. Forum, 1998: 635
|
| 11 |
Feng Y L, Li S, Yin J Z, et al. Effect of normalizing on texture and deep-drawing property of 10Cr17 ferrite stainless steel [J]. Adv. Mater. Res., 2012, 418-420: 125
|
| 12 |
Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles [J]. Mat. Sci. Eng. A, 2012, 531: 2
doi: 10.1016/j.msea.2011.09.072
|
| 13 |
Yang X L, Xu Y B, Tan X D, et al. Relationships among crystallographic texture, fracture behavior and Charpy impact toughness in API X100 pipeline steel [J]. Mat. Sci. Eng. A, 2015, 641: 96
doi: 10.1016/j.msea.2015.06.029
|
| 14 |
Kang J, Li C N, Yuan G, et al. Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture [J]. Mater. Lett., 2016, 175: 157
doi: 10.1016/j.matlet.2016.04.007
|
| 15 |
Ma J N, Wang R Z, Yang C F, et al. Effect of surface layer with ultrafine grains on crack arrestability of heavy plate [J]. Acta Metall. Sinica, 2017(05): 549
|
| 15 |
马江南, 王瑞珍, 杨才福 等. 中厚板表层超细晶对止裂性能的影响 [J]. 金属学报, 2017, (05): 549
|
| 16 |
Sen R, Ghosh M, Kaiser M S. Microstructure-texture-fracture toughness property correlation in annealed Al-6Mg alloy with minor scandium and zirconium additions [J]. Fatigue Fract. Eng. Mater. Struct., 2012, 35(11): 1071
doi: 10.1111/j.1460-2695.2012.01700.x
|
| 17 |
Romaniv O N, Tkach A N, Gladkii Y N, et al. Fracture toughness of steel with a martensite-ferrite structure [J]. Mater. Sci., 1978, 13(3): 254
doi: 10.1007/BF00716115
|
| 18 |
Du M X, Wang M J. Effect of microstructure on toughness of high strength bainitic steel [J]. Heat Treat. Met., 2015(4):40-44
|
| 18 |
杜民献, 王孟君. 显微组织对贝氏体高强度钢冲击性能的影响 [J]. 金属热处理, 2015, (4): 40
|
| 19 |
Zhang X L, Feng Y R, Zhuang C J, et al. Study on effective particle size of high grade pipeline steels and relationship between CVN [J]. J. Mater. Eng., 2008, (007): 1
|
| 19 |
张小立, 冯耀荣, 庄传晶 等. 高钢级管线钢中有效晶粒尺寸及与CVN关系研究 [J]. 材料工程, 2008, (007): 1
|
| 20 |
Li Z T, Chai F, Yang C F, et al. Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel [J]. Chin. J. Mater. Res., 2018, 32(12): 11
|
| 20 |
李振团, 柴 锋, 杨才福 等. 淬火工艺对UHS海工钢力学性能的影响 [J]. 材料研究学报, 2018, 32(12): 11
|
| 21 |
Sa S Y, Wang P. Grain boundary characterization and its influence on fatigue crack initiation and propagation in Ti-15-3 sheet [J]. The Chinese Journal of Nonferrous Metals, 2010, 20: 429
|
| 21 |
撒世勇, 王 平. Ti-15-3板材中晶界特征及其对疲劳裂纹萌生与扩展的影响 [J]. 中国有色金属学报, 2010, 20: 429
|
| 22 |
Jiang J X, Wu H B, Liang J, et al. Microstructural characterization and impact toughness of a jackup rig rack steel treated by intercritical heat treatment [J]. Mat. Sci. Eng. A, 2013, 587(10): 359
doi: 10.1016/j.msea.2013.09.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|