|
|
定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响 |
徐利君1,2, 郑策1, 冯小辉1, 黄秋燕1( ), 李应举1( ), 杨院生1 |
1.中国科学院金属研究所 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy |
XU Lijun1,2, ZHENG Ce1, FENG Xiaohui1, HUANG Qiuyan1( ), LI Yingju1( ), YANG Yuansheng1 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
Lijun XU,
Ce ZHENG,
Xiaohui FENG,
Qiuyan HUANG,
Yingju LI,
Yuansheng YANG.
Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(8): 571-580.
1 |
Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
|
2 |
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review [J]. Prog. Mater. Sci., 2012, 57(5): 911
doi: 10.1016/j.pmatsci.2011.11.001
|
3 |
Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21(6): 561
|
3 |
张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J] 材料研究学报, 2007, 21(6): 561
|
4 |
Li Z, Wang M P, Xu G Y. Materials of Cu-based Shape Memory Alloys [M]. Changsha: Central South University Press, 2010
|
4 |
李 周, 汪明朴, 徐根应. 铜基形状记忆合金材料 [M]. 长沙: 中南大学出版社, 2010
|
5 |
Suezawa M, Sumino K. Behaviour of elastic constants in Cu-Al-Ni alloy in the close vicinity of Ms-point [J]. Scr. Metall., 1976, 10(9): 789
doi: 10.1016/0036-9748(76)90294-5
|
6 |
Guenin G, Morin M, Gobin P F, et al. Elastic constant measurements in β Cu-Zn-Al near the martensitic transformation temperature [J]. Scr. Metall., 1977, 11(12): 1071
doi: 10.1016/0036-9748(77)90310-6
|
7 |
Mercier O, Melton K N, Gremaud G, et al. Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation [J]. J. Appl. Phys., 1980, 51(3): 1833
doi: 10.1063/1.327750
|
8 |
Miyazaki S, Kawai T, Otsuka K. On the origin of intergranular fracture in β phase shape memory alloys [J]. Scr. Metall., 1982, 16(4): 431
doi: 10.1016/0036-9748(82)90167-3
|
9 |
Liu J L. The basic research on proprieties and preparation process of columnar-grained Cu71Al18Mn11 shape memory alloy [D]. Beijing: University of Science & Technology Beijing, 2016
|
9 |
刘记立. 柱状晶组织Cu71Al18Mn11形状记忆合金的性能及制备加工基础研究 [D]. 北京: 北京科技大学, 2016
|
10 |
Baker I, Li J. Directional annealing of cold-rolled copper single crystals [J]. Acta Mater., 2002, 50(4): 805
doi: 10.1016/S1359-6454(01)00384-6
|
11 |
Yang C, Baker I. Directional recrystallisation processing: a review [J]. Int. Mater. Rev., 2021, 66: 256
doi: 10.1080/09506608.2020.1819688
|
12 |
Li J, Johns S L, Iliescu B M, et al. The effect of hot zone velocity and temperature gradient on the directional recrystallization of polycrystalline nickel [J]. Acta Mater., 2002, 50(18): 4491
doi: 10.1016/S1359-6454(02)00265-3
|
13 |
Li J, Baker I. An EBSP study of directionally recrystallized cold-rolled nickel [J]. Mater. Sci. Eng. A, 2005, 392 (1-2): 8
doi: 10.1016/j.msea.2004.07.017
|
14 |
Zhang Z W, Chen G L, Chen G. Microstructural evolution of commercial pure iron during directional annealing [J]. Mater. Sci. Eng. A, 2006, 422 (1-2): 241
doi: 10.1016/j.msea.2006.02.001
|
15 |
Zhang Z W, Chen G, Chen G L. Dynamics and mechanism of columnar grain growth of pure iron under directional annealing [J]. Acta Mater., 2007, 55(17): 5988
doi: 10.1016/j.actamat.2007.07.019
|
16 |
Zhang Z W, Chen G, Bei H B, et al. Directional recrystallization and microstructures of an Fe-6.5wt%Si alloy [J]. J. Mater. Res., 2011, 24(8): 2654
doi: 10.1557/jmr.2009.0303
|
17 |
Hotzler R K, Glasgow T K. The influence of γ'on the recrystallization of an oxide dispersion strengthened superalloy-ma 6000e [J]. Metall. Trans. A, 1982, 13 (10): 1665
doi: 10.1007/BF02647821
|
18 |
Marsh J M, Martin J W. Micromechanisms of texture development during zone annealing of MA 6000 extrusions [J]. Mater. Sci. Technol., 1991, 7(2): 183
doi: 10.1179/mst.1991.7.2.183
|
19 |
Mujahid M, Martin J W. Development of microstructures of high grain aspect ratio during zone annealing of oxide dispersion strengthened superalloys [J]. Mater. Sci. Technol., 1994, 10(8): 703
doi: 10.1179/mst.1994.10.8.703
|
20 |
Zhang Z W, Chen G L, Chen G. The effect of drawing velocity and phase transformation on the structure of directionally annealed iron [J]. Mater. Sci. Eng. A, 2006, 434 (1-2): 58
doi: 10.1016/j.msea.2006.07.016
|
21 |
Zhang Z W, Wang W H, Zou Y, et al. Control of grain boundary character distribution and its effects on the deformation of Fe–6.5 wt.% Si [J]. J. Alloys Compd., 2015, 639: 40
doi: 10.1016/j.jallcom.2015.03.129
|
22 |
Xin X L. Effect of directional recrystallization process on microstructure and properties of alloys [D]. Harbin: Harbin Engineering University, 2019
|
22 |
辛显亮. 定向再结晶工艺对合金微结构及性能影响 [D]. 哈尔滨: 哈尔滨工程大学, 2019
|
23 |
Yang C, Baker I. Elevated temperature directional recrystallization of high-purity nickel [J]. Philos. Mag., 2019, 99(9): 1057
doi: 10.1080/14786435.2019.1576936
|
24 |
Cairns R L, Curwick L R, Benjamin J S. Grain growth in dispersion strengthened superalloys by moving zone heat treatments [J]. Metall. Trans. A, 1975, 6 (1): 179
doi: 10.1007/BF02673686
|
25 |
Yang C, Baker I. Effect of solute on microstructural evolution during directional recrystallization [J]. J. Alloys Compd., 2020, 815: 152358
doi: 10.1016/j.jallcom.2019.152358
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|