Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 571-580    DOI: 10.11901/1005.3093.2022.481
  研究论文 本期目录 | 过刊浏览 |
定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响
徐利君1,2, 郑策1, 冯小辉1, 黄秋燕1(), 李应举1(), 杨院生1
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy
XU Lijun1,2, ZHENG Ce1, FENG Xiaohui1, HUANG Qiuyan1(), LI Yingju1(), YANG Yuansheng1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
Lijun XU, Ce ZHENG, Xiaohui FENG, Qiuyan HUANG, Yingju LI, Yuansheng YANG. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(8): 571-580.

全文: PDF(19213 KB)   HTML
摘要: 

对75%变形量热轧态Cu71Al18Mn11合金进行热区温度分别为800、850和900℃和抽拉速度分别为2、5和15 μm/s的正交定向再结晶实验,研究工艺参数对热轧态Cu71Al18Mn11合金的定向再结晶组织和超弹性性能的影响,并分析定向再结晶机理。结果表明:随着抽拉速度的提高,定向再结晶的效果呈现先增强后减弱的趋势。抽拉速度为2 μm/s时为粗大等轴晶中掺杂着少量柱状晶的组织,抽拉速度提高到5 μm/s时可获得大长径比柱状晶组织,但抽拉速度提高至15 μm/s时则定向再结晶组织为柱状晶与等轴晶混合组织。大长径比柱状晶组织的合金其超弹性性能较好,900℃-5 μm/s定向再结晶合金的应变量为12%时残余应变仅为1.1%,超弹性应变为9.05%。抽拉速度和热区温度影响定向再结晶过程中柱状晶吞并其前端一次再结晶晶粒的速度,从而影响定向再结晶组织;当热区移动的速度、柱状晶吞并前端一次再结晶晶粒的速度和柱状晶前端生成一次再结晶晶粒的速度三者达到平衡时柱状晶界面持续向前推进,最终生成大长径比的柱状晶组织。

关键词 金属材料Cu-Al-Mn定向再结晶超弹性性能二次再结晶    
Abstract

According to an orthogonal experiment design, the directional recrystallization of hot-rolled Cu71Al18Mn11 alloy with deformation degree of 75% was carried out at 800, 850 and 900℃, by drawing speed of 2, 5 and 15 μm/s respectively. The effect of process parameters on the directional recrystallization microstructure and superelasticity of the hot-rolled Cu71Al18Mn11 alloy was assessed, meanwhile, the directional recrystallization mechanism was analyzed. The results show that the directional recrystallization effect may firstly increase and then decrease with the increase of drawing speed. When the drawing speed is 2 μm/s, a small number of columnar grains emerged within the coarse equiaxed grains. When the drawing speed increases to 5 μm/s, the microstructure of columnar grains with large aspect ratio can be obtained. However, when the drawing speed further increases to 15 μm/s, the directional recrystallization microstructure is a mixture of columnar grains and equiaxed grains. The superelastic properties are better of the directionally recrystallized alloys with columnar grains of large aspect ratio. After being subjected to an applied strain of 12%, the alloy directionally recrystallized at 900℃- 5 μm/s presents a residual strain of only 1.1%, while a superelastic strain of 9.05%. The drawing velocity and hot zone temperature can affect the speed, at which the columnar grains swallowed up the primary recrystallized grains ahead in the process of directional recrystallization, thus affecting the microstructure of directionally recrystallized alloy. Once, the three speeds, i.e. the hot zone movement, the columnar grains swallowing up the primary recrystallized grains ahead and the generation of new primary recrystallization grains, all are in equilibrium, the front boundary of the existing columnar grains will continues to move forward, which will eventually promote the formation of microstructure of columnar grains with large aspect ratio.

Key wordsmetallic materials    Cu-Al-Mn    directional recrystallization    superelastic property    secondary recrystallization
收稿日期: 2022-09-06     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划(2018YFE0115800)
通讯作者: 李应举,研究员,yjli@imr.ac.cn,研究方向为先进材料凝固与制备技术;
黄秋燕,副研究员,qyhuang16b@imr.ac.cn,研究方向为轻合金的设计与制备
Corresponding author: LI Yingju, Tel: 13840520360, E-mail: yjli@imr.ac.cn;
HUANG Qiuyan, Tel: 18512416690, E-mail: qyhuang16b@imr.ac.cn
作者简介: 徐利君,女,1997年生,硕士生
图1  定向再结晶装置的示意图
图2  循环加载-卸载拉伸实验用样品的示意图
图3  在不同温度梯度条件下样品进入热区前的温度变化
图4  在不同温度梯度条件下热轧Cu71Al18Mn11合金定向再结晶样品的金相照片
图5  热轧工艺参数不同的Cu71Al18Mn11合金定向再结晶样品的金相照片
图6  抽拉速度为5 μm/s时不同热区温度定向再结晶样品柱状晶的尺寸
图7  不同工艺参数热轧Cu71Al18Mn11合金定向再结晶后的循环加载-卸载拉伸曲线
图8  不同工艺参数热轧Cu71Al18Mn11合金定向再结晶样品的残余应变(εr)和超弹性(εSE)应变曲线
图9  不同工艺参数定向再结晶样品的超弹性应变(εSE)与外加应变(εt-εθ)的关系
Drawing velocity /μm·s-12515
Annealling temperature/℃800850900800850900800850900
εSEMAX / %6.347.589.997.757.5411.653.544.978.71
εrMAX / %6.406.554.3410.594.004.245.369.559.41
表1  不同参数定向再结晶样品的最大超弹性应变(εSEMAX)和对应的残余应变(εrMAX)
图10  热轧Cu71Al18Mn11合金抽拉速度为5 μm/s定向再结晶后的整体宏观组织
图11  抽拉速度为5 μm/s不同热区温度定向再结晶样品的柱状晶IPF图
图12  热轧Cu71Al18Mn11合金等温退火后的金相照片
图13  热轧Cu71Al18Mn11合金在700℃退火30 min后的IPF图、再结晶分数和晶界分布以及在750℃退火20 min后的IPF图和晶界分布
图14  定向再结晶过程中等轴晶和柱状晶生长的示意图
1 Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
2 Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review [J]. Prog. Mater. Sci., 2012, 57(5): 911
doi: 10.1016/j.pmatsci.2011.11.001
3 Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21(6): 561
3 张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J] 材料研究学报, 2007, 21(6): 561
4 Li Z, Wang M P, Xu G Y. Materials of Cu-based Shape Memory Alloys [M]. Changsha: Central South University Press, 2010
4 李 周, 汪明朴, 徐根应. 铜基形状记忆合金材料 [M]. 长沙: 中南大学出版社, 2010
5 Suezawa M, Sumino K. Behaviour of elastic constants in Cu-Al-Ni alloy in the close vicinity of Ms-point [J]. Scr. Metall., 1976, 10(9): 789
doi: 10.1016/0036-9748(76)90294-5
6 Guenin G, Morin M, Gobin P F, et al. Elastic constant measurements in β Cu-Zn-Al near the martensitic transformation temperature [J]. Scr. Metall., 1977, 11(12): 1071
doi: 10.1016/0036-9748(77)90310-6
7 Mercier O, Melton K N, Gremaud G, et al. Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation [J]. J. Appl. Phys., 1980, 51(3): 1833
doi: 10.1063/1.327750
8 Miyazaki S, Kawai T, Otsuka K. On the origin of intergranular fracture in β phase shape memory alloys [J]. Scr. Metall., 1982, 16(4): 431
doi: 10.1016/0036-9748(82)90167-3
9 Liu J L. The basic research on proprieties and preparation process of columnar-grained Cu71Al18Mn11 shape memory alloy [D]. Beijing: University of Science & Technology Beijing, 2016
9 刘记立. 柱状晶组织Cu71Al18Mn11形状记忆合金的性能及制备加工基础研究 [D]. 北京: 北京科技大学, 2016
10 Baker I, Li J. Directional annealing of cold-rolled copper single crystals [J]. Acta Mater., 2002, 50(4): 805
doi: 10.1016/S1359-6454(01)00384-6
11 Yang C, Baker I. Directional recrystallisation processing: a review [J]. Int. Mater. Rev., 2021, 66: 256
doi: 10.1080/09506608.2020.1819688
12 Li J, Johns S L, Iliescu B M, et al. The effect of hot zone velocity and temperature gradient on the directional recrystallization of polycrystalline nickel [J]. Acta Mater., 2002, 50(18): 4491
doi: 10.1016/S1359-6454(02)00265-3
13 Li J, Baker I. An EBSP study of directionally recrystallized cold-rolled nickel [J]. Mater. Sci. Eng. A, 2005, 392 (1-2): 8
doi: 10.1016/j.msea.2004.07.017
14 Zhang Z W, Chen G L, Chen G. Microstructural evolution of commercial pure iron during directional annealing [J]. Mater. Sci. Eng. A, 2006, 422 (1-2): 241
doi: 10.1016/j.msea.2006.02.001
15 Zhang Z W, Chen G, Chen G L. Dynamics and mechanism of columnar grain growth of pure iron under directional annealing [J]. Acta Mater., 2007, 55(17): 5988
doi: 10.1016/j.actamat.2007.07.019
16 Zhang Z W, Chen G, Bei H B, et al. Directional recrystallization and microstructures of an Fe-6.5wt%Si alloy [J]. J. Mater. Res., 2011, 24(8): 2654
doi: 10.1557/jmr.2009.0303
17 Hotzler R K, Glasgow T K. The influence of γ'on the recrystallization of an oxide dispersion strengthened superalloy-ma 6000e [J]. Metall. Trans. A, 1982, 13 (10): 1665
doi: 10.1007/BF02647821
18 Marsh J M, Martin J W. Micromechanisms of texture development during zone annealing of MA 6000 extrusions [J]. Mater. Sci. Technol., 1991, 7(2): 183
doi: 10.1179/mst.1991.7.2.183
19 Mujahid M, Martin J W. Development of microstructures of high grain aspect ratio during zone annealing of oxide dispersion strengthened superalloys [J]. Mater. Sci. Technol., 1994, 10(8): 703
doi: 10.1179/mst.1994.10.8.703
20 Zhang Z W, Chen G L, Chen G. The effect of drawing velocity and phase transformation on the structure of directionally annealed iron [J]. Mater. Sci. Eng. A, 2006, 434 (1-2): 58
doi: 10.1016/j.msea.2006.07.016
21 Zhang Z W, Wang W H, Zou Y, et al. Control of grain boundary character distribution and its effects on the deformation of Fe–6.5 wt.% Si [J]. J. Alloys Compd., 2015, 639: 40
doi: 10.1016/j.jallcom.2015.03.129
22 Xin X L. Effect of directional recrystallization process on microstructure and properties of alloys [D]. Harbin: Harbin Engineering University, 2019
22 辛显亮. 定向再结晶工艺对合金微结构及性能影响 [D]. 哈尔滨: 哈尔滨工程大学, 2019
23 Yang C, Baker I. Elevated temperature directional recrystallization of high-purity nickel [J]. Philos. Mag., 2019, 99(9): 1057
doi: 10.1080/14786435.2019.1576936
24 Cairns R L, Curwick L R, Benjamin J S. Grain growth in dispersion strengthened superalloys by moving zone heat treatments [J]. Metall. Trans. A, 1975, 6 (1): 179
doi: 10.1007/BF02673686
25 Yang C, Baker I. Effect of solute on microstructural evolution during directional recrystallization [J]. J. Alloys Compd., 2020, 815: 152358
doi: 10.1016/j.jallcom.2019.152358
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[8] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[9] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[10] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
[15] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.