Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 655-667    DOI: 10.11901/1005.3093.2022.311
  研究论文 本期目录 | 过刊浏览 |
超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变
赵政翔1, 廖露海1, 徐芳泓2, 张威2, 李静媛1()
1.北京材料基因工程高精尖创新中心 北京科技大学材料科学与工程学院 北京 100083
2.太原钢铁(集团)有限公司先进不锈钢材料国家重点实验室 太原 030003
Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N
ZHAO Zhengxiang1, LIAO Luhai1, XU Fanghong2, ZHANG Wei2, LI Jingyuan1()
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
引用本文:

赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
Zhengxiang ZHAO, Luhai LIAO, Fanghong XU, Wei ZHANG, Jingyuan LI. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. Chinese Journal of Materials Research, 2023, 37(9): 655-667.

全文: PDF(24005 KB)   HTML
摘要: 

对超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N进行单轴热压缩,研究了其在950℃~1200℃、应变速率为0.001 s-1~10 s-1的条件下的热变形行为;采用Arrhenius方程和Zener-Hollomon参数(Z)对变形参数建模并建立了本构方程,发现峰值应力、动态再结晶临界应力均与ln(Z/A)呈线性关系,材料的热变形激活能为497.11 kJ/mol。基于动态材料模型建立了不同塑性应变下的热加工图,使用电子背散射衍射技术(EBSD)表征了材料在不同变形条件下的微观组织,发现其在大多数变形条件下的软化机制是非连续动态再结晶(DDRX)。综合分析热加工图和微观组织,发现合理的热加工区域为变形温度1150~1200℃、应变速率0.1~1 s-1

关键词 金属材料超级奥氏体不锈钢热变形显微组织加工图动态再结晶    
Abstract

Hot deformation behavior and microstructure evolution of super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N were studied by uniaxial compression tests at temperatures from 1123 K to 1473 K under strain rates of 0.001~10 s-1 up to the true strain of 0.8. The deformation parameters were modeled by Arrhenius equation and Zener-Hollomon parameter (Z). The peak stress and critical stress for dynamic recrystallization was found to exhibit a linear relationship with ln(Z/A), the thermal deformation activation energy of the steel was 497.11 kJ/mol. Based on the dynamic material model, the processing maps under different plastic strains were established. Electron backscatter diffraction (EBSD) was used to characterize the microstructure of the steel under different deformation conditions. The softening mechanism of the steel under most deformation conditions is discontinuous dynamic recrystallization (DDRX). Based on the analysis of microstructure and processing map, the optimum processing domain for hot deformation is identified as the deformation temperature of 1150~1200℃ and strain rate of 0.1~1 s-1.

Key wordsmetallic materials    super austenitic stainless steel    hot deformation    microstructure    processing map    dynamic recrystallization
收稿日期: 2022-06-02     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(U1806220);山西省科技重大专项(20191102006)
通讯作者: 李静媛,教授,lijy@ustb.edu.cn,研究方向为先进金属材料
Corresponding author: LI Jingyuan, Tel: (010)82376939, E-mail: lijy@ustb.edu.cn
作者简介: 赵政翔,男,1998年生,硕士生
CSiCrNiMoMnCuNFe
0.0110.08224.7222.047.113.370.330.424Bal.
表1  超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的化学成分
图1  超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的原始微观组织
图2  超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N不同应变速率下的真应力真应变曲线
图3  超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N在应变速率为1 s-1和10 s-1条件下加工硬化率(θ=∂σ∂εT, ε˙)随应力的变化
图4  在不同温度和应变速率条件下(-∂θ/∂σ)随流变应力σ的变化
图5  lnsinh(ασp)随不同温度下的应变率、不同应变率下的温度和Z参数对数的变化
图6  峰值应力(σp)、临界应力(σc)、峰值应变(εp)和临界应变(εc)随ln(Z/A)的变化
图7  在不同真应变条件下基于动态材料模型的热加工图和热加工图分为6个区域的微观结构分析
图8  超级奥氏体不锈钢在不同变形条件下的IPF图
图9  超级奥氏体不锈钢在不同热变形条件下的微观组织
图10  超级奥氏体不锈钢在950℃, 0.001 s-1和950℃,10 s-1条件下再结晶区域的GOS分布和晶界取向分布
图11  超级奥氏体不锈钢在950℃, 0.001 s-1和950℃, 10 s-1变形下的IPF图和CSL晶界分布
图12  沿图11中变形晶粒白线分布的取向差分布
图13  超级奥氏体不锈钢在0.6真应变不同变形条件下的绝热温升
图14  超级奥氏体不锈钢在1200℃,10 s-1变形条件下析出相产生的裂纹
1 Zhang S C, Jiang Z H, Li H B, et al. Research and development progress of super austenitic stainless steel 654SMO [J]. J. Iron. Steel. Res., 2019, 31(02): 132
1 张树才, 姜周华, 李花兵 等. 超级奥氏体不锈钢654SMO的研究进展[J]. 钢铁研究学报, 2019, 31(02): 132
2 Gao J B, Fan S P, Zhang S C, et al. Segregation behavior and homogenizing treatment of a new type super austenitic stainless steel 654SMO [J]. Iron. Steel, 2018, 53(08): 83
2 高建兵, 范思鹏, 张树才 等. 新型超级奥氏体不锈钢654SMO偏析行为及均匀化工艺 [J]. 钢铁, 2018, 53(08): 83
3 Zhang S, Li H, Jiang Z, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci, 2020, 163: 108295
doi: 10.1016/j.corsci.2019.108295
4 Lee T H, Kim S J, Jung Y C, et al. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900℃ [J]. Metall. Mater. Trans, 2000, 31(7): 1713
doi: 10.1007/s11661-998-0332-6
5 Liu G, Ying H, Shi Z, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map [J]. Mater. Des., 2014, 53: 662
doi: 10.1016/j.matdes.2013.07.065
6 Wang S H, Wu C C, Chen C Y, et al. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel [J]. Metal. Mate. Inter., 2007, 13(4): 275
7 Koutsoukis T, Redjamia A, Fourlaris G, et al. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561(20): 477
doi: 10.1016/j.msea.2012.10.066
8 Pu E, Zheng W, Xiang J, et al. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654 [J]. Mater. Sci. Eng. A, 2014, 598(26): 174
doi: 10.1016/j.msea.2014.01.027
9 Zhong X T, Wang L, Huang L K, et al. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Tec., 2020, 42(07): 243
10 Pu E, Han F, Min L, et al. Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation [J]. J. Iron. Steel. Res., 2016, 23(02): 178
doi: 10.1016/S1006-706X(16)30031-0
11 Lin W A, Zl A, Xin H A, et al. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46N-0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction [J]. J. Mater. Sci. Tech., 2021, 13: 618
doi: 10.1179/026708397790285575
12 Lin W A, Chen C, Zl A, et al. Orientation-dependent dynamic recrystallization of super austenitic stainless steels [J]. J. Mate. Res. Tech, 2021, 15:6769
13 Poliak E I, Jonas J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44(1): 127
doi: 10.1016/1359-6454(95)00146-7
14 Konas J, Sellars C M, Tegart W, et al. Strength and structure under hot-working conditions [J]. Metall. Rev., 2013, 14(1): 1
doi: 10.1179/095066069790138056
15 Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phy., 1944, 15(1): 22
doi: 10.1063/1.1707363
16 Sabokpa O, Zarei-Hanzaki A, Abedi H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy [J]. Mater. Des., 2012, 39: 390
doi: 10.1016/j.matdes.2012.03.002
17 Manshadi A, Barnett M R, Hodgson P D, et al. Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization [J]. Metall. Mate. Trans. A, 2008, 39(6): 1359
18 Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mate. Sci. Eng. A, 2002, 322(1-2): 43
doi: 10.1016/S0921-5093(01)01117-0
19 Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. Metall. Rev., 1998, 43(6): 243
doi: 10.1179/imr.1998.43.6.243
20 Murty S V S N, Rao B N. Ziegler's Criterion on the Instability Regions in Processing Maps [J]. J. Mater. Sci. Letter, 1998, 17(14):1203
doi: 10.1023/A:1006541710533
21 Luo J, Li L, Li M Q, et al. The flow behavior and processing maps during the isothermal compression of Ti17 alloy [J]. Mater. Sci. Eng. A, 2014, 606(12): 165
doi: 10.1016/j.msea.2014.03.103
22 Zhang S C, Li H B, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Tech., 2020, 42(07): 145
23 Marin R, Combeau H, Zollinger J, et al. σ-Phase Formation in Super Austenitic Stainless Steel During Directional Solidification and Subsequent Phase Transformations [J]. Metall. Mater. Trans. A, 2020, 51(7): 3526
doi: 10.1007/s11661-020-05794-1
24 Liao L, Li J, Xu F, et al. Role of Substitution of Ni by Co During Isothermal Aging of Superaustenitic Stainless Steels: Precipitation Behavior and Phase Transformations [J]. Metall. Mater. Trans. A, 2022, 53(6): 2130
doi: 10.1007/s11661-022-06656-8
25 Zhang S, Jiang Z, Li H, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mate. Charac, 2018, 137:244
26 Koutsoukis T, Redjamia A, Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561: 477
doi: 10.1016/j.msea.2012.10.066
27 Torga Nch Uk V, Rybalchenko O, Dobatkin S V, et al. Hot deformation and dynamic recrystallization of 18%Mn TWIP steels [J]. Adv. Eng. Mater., 2020, 22(10): 1438
28 Rout M, Ranjan R, Pal S K, et al. EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel [J]. Mater. Sci. Eng. A, 2018, 711(10): 378
doi: 10.1016/j.msea.2017.11.059
29 Yamaguchi I, Yonemura M. Recovery and Recrystallization Behaviors of Ni-30 Mass Pct Fe Alloy During Uniaxial Cold and Hot Compression [J]. Metall. Mater. Trans. A, 2021, 52(8): 3517
doi: 10.1007/s11661-021-06323-4
30 Mandal S, Bhaduri A K, Sarma V S. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel [J]. Metall. Mater. Trans. A, 2012, 43(6): 2056
doi: 10.1007/s11661-011-1012-5
31 Fengming, Qin, Hua, et al. Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel [J]. Mater. Sci. Eng.A, 2017, 684(27): 634
32 Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L [J]. Metal. Mater. Trans. A, 1994, 25(12):2737
doi: 10.1007/BF02649226
33 Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test [J]. J. Mater. Eng. Perform, 2001, 10(6):710
doi: 10.1361/105994901770344593
34 Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N) [J]. Metall. Mater. Trans. A, 2014, 45(12): 5645
doi: 10.1007/s11661-014-2480-1
35 Liao L, Li J, Zhao Z, et al. Precipitation and phase transformation behavior during high-temperature aging of a cobalt modified Fe-24Cr-(22-x)Ni-7Mo-xCo superaustenitic stainless steel [J]. J. Mater. Sci, 2022, 57(7): 4771
doi: 10.1007/s10853-021-06740-1
36 Stauffer A C, Koss D A, Mckirgan J B. Microstructural banding and failure of a stainless steel [J]. Metall. Mater. Trans. A, 2004, 35(4):1317
doi: 10.1007/s11661-004-0306-2
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.