|
|
超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变 |
赵政翔1, 廖露海1, 徐芳泓2, 张威2, 李静媛1( ) |
1.北京材料基因工程高精尖创新中心 北京科技大学材料科学与工程学院 北京 100083 2.太原钢铁(集团)有限公司先进不锈钢材料国家重点实验室 太原 030003 |
|
Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N |
ZHAO Zhengxiang1, LIAO Luhai1, XU Fanghong2, ZHANG Wei2, LI Jingyuan1( ) |
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China |
引用本文:
赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
Zhengxiang ZHAO,
Luhai LIAO,
Fanghong XU,
Wei ZHANG,
Jingyuan LI.
Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. Chinese Journal of Materials Research, 2023, 37(9): 655-667.
1 |
Zhang S C, Jiang Z H, Li H B, et al. Research and development progress of super austenitic stainless steel 654SMO [J]. J. Iron. Steel. Res., 2019, 31(02): 132
|
1 |
张树才, 姜周华, 李花兵 等. 超级奥氏体不锈钢654SMO的研究进展[J]. 钢铁研究学报, 2019, 31(02): 132
|
2 |
Gao J B, Fan S P, Zhang S C, et al. Segregation behavior and homogenizing treatment of a new type super austenitic stainless steel 654SMO [J]. Iron. Steel, 2018, 53(08): 83
|
2 |
高建兵, 范思鹏, 张树才 等. 新型超级奥氏体不锈钢654SMO偏析行为及均匀化工艺 [J]. 钢铁, 2018, 53(08): 83
|
3 |
Zhang S, Li H, Jiang Z, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci, 2020, 163: 108295
doi: 10.1016/j.corsci.2019.108295
|
4 |
Lee T H, Kim S J, Jung Y C, et al. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900℃ [J]. Metall. Mater. Trans, 2000, 31(7): 1713
doi: 10.1007/s11661-998-0332-6
|
5 |
Liu G, Ying H, Shi Z, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map [J]. Mater. Des., 2014, 53: 662
doi: 10.1016/j.matdes.2013.07.065
|
6 |
Wang S H, Wu C C, Chen C Y, et al. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel [J]. Metal. Mate. Inter., 2007, 13(4): 275
|
7 |
Koutsoukis T, Redjamia A, Fourlaris G, et al. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561(20): 477
doi: 10.1016/j.msea.2012.10.066
|
8 |
Pu E, Zheng W, Xiang J, et al. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654 [J]. Mater. Sci. Eng. A, 2014, 598(26): 174
doi: 10.1016/j.msea.2014.01.027
|
9 |
Zhong X T, Wang L, Huang L K, et al. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Tec., 2020, 42(07): 243
|
10 |
Pu E, Han F, Min L, et al. Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation [J]. J. Iron. Steel. Res., 2016, 23(02): 178
doi: 10.1016/S1006-706X(16)30031-0
|
11 |
Lin W A, Zl A, Xin H A, et al. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46N-0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction [J]. J. Mater. Sci. Tech., 2021, 13: 618
doi: 10.1179/026708397790285575
|
12 |
Lin W A, Chen C, Zl A, et al. Orientation-dependent dynamic recrystallization of super austenitic stainless steels [J]. J. Mate. Res. Tech, 2021, 15:6769
|
13 |
Poliak E I, Jonas J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44(1): 127
doi: 10.1016/1359-6454(95)00146-7
|
14 |
Konas J, Sellars C M, Tegart W, et al. Strength and structure under hot-working conditions [J]. Metall. Rev., 2013, 14(1): 1
doi: 10.1179/095066069790138056
|
15 |
Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phy., 1944, 15(1): 22
doi: 10.1063/1.1707363
|
16 |
Sabokpa O, Zarei-Hanzaki A, Abedi H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy [J]. Mater. Des., 2012, 39: 390
doi: 10.1016/j.matdes.2012.03.002
|
17 |
Manshadi A, Barnett M R, Hodgson P D, et al. Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization [J]. Metall. Mate. Trans. A, 2008, 39(6): 1359
|
18 |
Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mate. Sci. Eng. A, 2002, 322(1-2): 43
doi: 10.1016/S0921-5093(01)01117-0
|
19 |
Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. Metall. Rev., 1998, 43(6): 243
doi: 10.1179/imr.1998.43.6.243
|
20 |
Murty S V S N, Rao B N. Ziegler's Criterion on the Instability Regions in Processing Maps [J]. J. Mater. Sci. Letter, 1998, 17(14):1203
doi: 10.1023/A:1006541710533
|
21 |
Luo J, Li L, Li M Q, et al. The flow behavior and processing maps during the isothermal compression of Ti17 alloy [J]. Mater. Sci. Eng. A, 2014, 606(12): 165
doi: 10.1016/j.msea.2014.03.103
|
22 |
Zhang S C, Li H B, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Tech., 2020, 42(07): 145
|
23 |
Marin R, Combeau H, Zollinger J, et al. σ-Phase Formation in Super Austenitic Stainless Steel During Directional Solidification and Subsequent Phase Transformations [J]. Metall. Mater. Trans. A, 2020, 51(7): 3526
doi: 10.1007/s11661-020-05794-1
|
24 |
Liao L, Li J, Xu F, et al. Role of Substitution of Ni by Co During Isothermal Aging of Superaustenitic Stainless Steels: Precipitation Behavior and Phase Transformations [J]. Metall. Mater. Trans. A, 2022, 53(6): 2130
doi: 10.1007/s11661-022-06656-8
|
25 |
Zhang S, Jiang Z, Li H, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mate. Charac, 2018, 137:244
|
26 |
Koutsoukis T, Redjamia A, Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561: 477
doi: 10.1016/j.msea.2012.10.066
|
27 |
Torga Nch Uk V, Rybalchenko O, Dobatkin S V, et al. Hot deformation and dynamic recrystallization of 18%Mn TWIP steels [J]. Adv. Eng. Mater., 2020, 22(10): 1438
|
28 |
Rout M, Ranjan R, Pal S K, et al. EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel [J]. Mater. Sci. Eng. A, 2018, 711(10): 378
doi: 10.1016/j.msea.2017.11.059
|
29 |
Yamaguchi I, Yonemura M. Recovery and Recrystallization Behaviors of Ni-30 Mass Pct Fe Alloy During Uniaxial Cold and Hot Compression [J]. Metall. Mater. Trans. A, 2021, 52(8): 3517
doi: 10.1007/s11661-021-06323-4
|
30 |
Mandal S, Bhaduri A K, Sarma V S. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel [J]. Metall. Mater. Trans. A, 2012, 43(6): 2056
doi: 10.1007/s11661-011-1012-5
|
31 |
Fengming, Qin, Hua, et al. Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel [J]. Mater. Sci. Eng.A, 2017, 684(27): 634
|
32 |
Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L [J]. Metal. Mater. Trans. A, 1994, 25(12):2737
doi: 10.1007/BF02649226
|
33 |
Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test [J]. J. Mater. Eng. Perform, 2001, 10(6):710
doi: 10.1361/105994901770344593
|
34 |
Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N) [J]. Metall. Mater. Trans. A, 2014, 45(12): 5645
doi: 10.1007/s11661-014-2480-1
|
35 |
Liao L, Li J, Zhao Z, et al. Precipitation and phase transformation behavior during high-temperature aging of a cobalt modified Fe-24Cr-(22-x)Ni-7Mo-xCo superaustenitic stainless steel [J]. J. Mater. Sci, 2022, 57(7): 4771
doi: 10.1007/s10853-021-06740-1
|
36 |
Stauffer A C, Koss D A, Mckirgan J B. Microstructural banding and failure of a stainless steel [J]. Metall. Mater. Trans. A, 2004, 35(4):1317
doi: 10.1007/s11661-004-0306-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|