|
|
铁电极化诱导的PbTiO3薄膜的取向聚集生长和晶粒尺寸调控 |
武梦姣1, 任召辉1( ), 田鹤2, 韩高荣1 |
1.浙江大学材料科学与工程学院 硅材料国家重点实验室 杭州 310027 2.浙江大学材料科学与工程学院 电子显微镜中心 杭州 310027 |
|
Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control |
WU Mengjiao1, REN Zhaohui1( ), TIAN He2, HAN Gaorong1 |
1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 2. Center of Electron Microscope, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
武梦姣, 任召辉, 田鹤, 韩高荣. 铁电极化诱导的PbTiO3薄膜的取向聚集生长和晶粒尺寸调控[J]. 材料研究学报, 2020, 34(9): 650-658.
Mengjiao WU,
Zhaohui REN,
He TIAN,
Gaorong HAN.
Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. Chinese Journal of Materials Research, 2020, 34(9): 650-658.
[1] |
Wang Y L, Zhao H Q, Zhang L X, et al. PbTiO3-based perovskite ferroelectric and multiferroic thin films [J]. Phys. Chem. Chem. Phys., 2017, 19: 17493
doi: 10.1039/c7cp01347g
pmid: 28671205
|
[2] |
Martin L W, Rappe A M. Thin-film ferroelectric materials and their applications [J]. Nat. Rev. Mater., 2016, 2: 16087
|
[3] |
Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications [J]. J. Appl. Phys., 2006, 100: 051606
|
[4] |
Ramesh R, Schlom D G. Orienting ferroelectric films [J]. Science, 2002, 296(5575): 1975
pmid: 12065821
|
[5] |
Mhin S, Nittala K, Cozzan C, et al. Role of the PbTiO3 seed layer on the crystallization behavior of PZT thin films [J]. J. Am. Ceram. Soc., 2015, 98(5): 1407
|
[6] |
Wang C C, Zhu J. A discussion on common characteristics of ferroelectricity, high temperature superconductivity and colossal magnetoresistance (CMR) effect [J]. Mater. Rev., 2002, 16(4): 16
|
[6] |
(汪春昌, 朱静. 铁电性、高温超导电性和庞磁电阻(CMR)效应的共性特征探讨 [J]. 材料导报, 2002, 16(4): 16)
|
[7] |
Börnstein L. Ferroelectrics and Related Substances: Oxides [M]. Berlin: Springer, 1981
|
[8] |
Guzmán G, Barboux P, Livage J, et al. Crystallization of textured PbTiO3 deposited from gels [J]. J Sol-Gel Sci Techn, 1994, 2(1): 619
|
[9] |
Lu X Y, Chen Z H, Cao Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films [J]. Nat. Commun., 2019, 10: 3951
pmid: 31477695
|
[10] |
Zhang S R, Zhu Y L, Tang Y L, et al. Giant polarization sustainability in ultrathin ferroelectric films stabilized by charge transfer [J]. Adv. Mater., 2017, 29(46): 1703543
|
[11] |
Saremi S, Xu R J, Dedon L R, et al. Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films [J]. Adv. Mater., 2016, 28(48): 10750
doi: 10.1002/adma.201603968
pmid: 27723127
|
[12] |
Chentir M -T, Utsugi S, Fujisawa T, et al. Small-strain (100)/(001)-oriented epitaxial PbTiO3 films with film thickness ranging from nano- to micrometer order grown on (100)CaF2 substrates by metal organic chemical vapor deposition [J]. J. Mater. Res., 2013, 28(5): 696
|
[13] |
Morioka H, Yamada T, Tagantsev A K, et al. Suppressed polar distortion with enhanced Curie temperature in in-plane 90o-domain structure of a-axis oriented PbTiO3 Film [J]. Appl. Phys. Lett., 2015, 106: 042905
|
[14] |
Muralt P, Maeder T, Sagalowicz L, et al. Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding [J]. J. Appl. Phys., 1998, 83(7): 3835
|
[15] |
Chi Q G, Li W L, Liu C Q, et al. Effect of TiOx seed layer on the texture and electric properties in La and Ca modified PbTiO3 thin films [J]. Thin Solid Films, 2009, 517(17): 4826
|
[16] |
Yang X, Wu X Q, Ren W, et al. Effects of LaNiO3 buffer layers on preferential orientation growth and properties of PbTiO3 thin films [J]. Ceram. Int., 2008, 34(4): 1035
doi: 10.1016/j.ceramint.2007.09.077
|
[17] |
Tang H, Zhou Z, Bowland C C, et al. Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions [J]. Nanotechnology, 2015, 26: 345602
pmid: 26243166
|
[18] |
Lu C J, Shen H M, Zhu Y P, et al. X-ray diffraction study on the grain-size-dependences of orientation and 90o-domain structure in oriented PbTiO3 thin films on (111) Pt [J]. Mater. Lett., 1997, 31(3): 189
doi: 10.1016/S0167-577X(96)00268-6
|
[19] |
Lu C J, Ren S B, Shen H M, et al. The effect of grain size on domain structure in unsupported thin films [J]. J. Phys.: Condens. Matter, 1996, 8(42): 8011
|
[20] |
Lu C J, Shen H M, Wang Y N, et al. Grain size effect on the phase transitions in oriented PbTiO3 thin films deposited by the sol-gel method on (111) Pt/Si [J]. Mater. Lett., 1998, 34(1): 5
doi: 10.1016/S0167-577X(97)00128-6
|
[21] |
Ren Z H, Wu M J, Chen X, et al. Electrostatic force-driven oxide heteroepitaxy for interface control [J]. Adv. Mater., 2018, 30(38): 1707017
doi: 10.1002/adma.v30.38
|
[22] |
Li W, Wang F, Li M, et al. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures [J]. Nano Energy, 2018, 45: 304
|
[23] |
Chao C Y, Ren Z H, Zhu Y H, et al. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates [J]. Angew. Chem. Int. Ed., 2012, 51(37): 9283
|
[24] |
Jia C L, Nagarajan V, He J Q, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films [J]. Nat. Mater., 2007, 6(1): 64
doi: 10.1038/nmat1808
pmid: 17173031
|
[25] |
Yin Z W. Dielectric Physics [M]. Beijing: Science Press, 2003
|
[25] |
(殷之文. 电介质物理学 第2版 [M]. 北京: 科学出版社, 2003)
|
[26] |
Bao D, Yao X, Wakiya N, et al. Structural, dielectric, and ferroelectric properties of PbTiO3 thin films by a simple sol-gel technique [J]. Mat. Sci. Eng B, 2002, 94: 269
|
[27] |
Zhang J, Huang F, Lin Z. Progress of nanocrystalline growth kinetics based on oriented attachment [J]. Nanoscale, 2010, 2(1): 18
doi: 10.1039/b9nr00047j
pmid: 20648361
|
[28] |
Tartaj J, Fernández J F, Villafuerte-Castrejón M E. Preparation of PbTiO3 by seeding-assisted chemical sol-gel [J]. Mater. Res. Bull., 2001, 36(3): 479
doi: 10.1016/S0025-5408(01)00543-8
|
[29] |
Selbach S M, Wang G Z, Einarsrud M A, et al. Decomposition and crystallization of a sol-gel-derived PbTiO3 precursor [J]. J. Am. Ceram. Soc., 2007, 90(8): 2649
doi: 10.1111/jace.2007.90.issue-8
|
[30] |
Lin C T, Scanlan B W, McNeill J D, et al. Crystallization behavior in a low temperature acetate process for perovskite PbTiO3, Pb(Zr,Ti)O3, and (Pb1-x,Lax)(Zry,Ti1-y)1-x/4O3 bulk powders [J]. J. Mater. Res., 1992, 7(9): 2546
doi: 10.1557/JMR.1992.2546
|
[31] |
Mansoor M A, Ismail A, Yahya R, et al. Perovskite-structured PbTiO3 thin films grown from a single-source precursor [J]. Inorg. Chem., 2013, 52: 5624
pmid: 23627942
|
[32] |
Tang X G, Guo H K, Zhou Q F, et al. Synthesis and structure of nanocrystalline oxides based on PbTiO3 by sol-gel process [J]. Nanostruct. Mater., 1998, 10(2): 161
|
[33] |
Speight M V. Growth kinetics of grain-boundary precipitates [J]. Acta. Metall., 1968, 16(1): 133
|
[34] |
Kirchner H O K. Coarsening of Grain-Boundary Precipitates [J]. Metall. Mater. Trans B, 1971, 2(10): 2861
|
[35] |
Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281(5379): 969
doi: 10.1126/science.281.5379.969
pmid: 9703506
|
[36] |
Penn R L, Banfield J F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2 [J]. Am. Mineral., 1998, 83: 1077
|
[37] |
Zhang J, Lin Z, Lan Y, et al. A multistep oriented attachment kinetics: Coarsening of ZnS nanoparticle in concentrated NaOH [J]. J. Am. Ceram. Soc., 2006, 128(39): 12981
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|