Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 641-649    DOI: 10.11901/1005.3093.2020.202
  研究论文 本期目录 | 过刊浏览 |
磁性多孔RGO@Ni复合材料的制备和吸波性能
刘佳良1, 陈平1,2(), 徐东卫1, 于祺3
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2.大连理工大学 三束材料改性教育部重点实验室 沈阳 116024
3.沈阳航空航天大学 辽宁省先进聚合物基复合材料重点实验室 沈阳 110136
Preparation and Microwave Absorption Properties of Magnetic Porous RGO@Ni Composites
LIU Jialiang1, CHEN Ping1,2(), XU Dongwei1, YU Qi3
1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
3. Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

刘佳良, 陈平, 徐东卫, 于祺. 磁性多孔RGO@Ni复合材料的制备和吸波性能[J]. 材料研究学报, 2020, 34(9): 641-649.
Jialiang LIU, Ping CHEN, Dongwei XU, Qi YU. Preparation and Microwave Absorption Properties of Magnetic Porous RGO@Ni Composites[J]. Chinese Journal of Materials Research, 2020, 34(9): 641-649.

全文: PDF(5922 KB)   HTML
摘要: 

以氧化石墨烯和乙酰丙酮镍为原料,用溶剂热法合成了三维多孔RGO@Ni纳米复合材料。采用X射线衍射(XRD)和X射线光电子能谱(XPS)表征了材料的晶体结构和组成,根据拉曼谱分析了材料内部的石墨化程度和结构缺陷,用扫描电镜(SEM)和透射电镜(TEM)观察了材料的形貌和微观结构。结果表明,当RGO@Ni纳米复合材料的填充量(质量分数)为25%时在最小反射损耗(RLmin)和最大有效吸收带宽(EAB)方面显示出优异的EMW吸收性能;厚度为2.2 mm的RGO@Ni纳米复合材料其RLmin为-61.2 dB,而在2.5 mm匹配厚度下覆盖的EAB范围最广,为6.6 GHz(10.5~17.1 GHz)。这种复合材料优异的微波吸收性能,归因于协同效应的增强和特殊的多孔结构。

关键词 复合材料电磁波吸收性能溶剂热反应三维石墨烯磁性纳米粒子    
Abstract

An economic and green approach for the controllable synthesis of porous functionalized graphene materials as microwave absorbers was proposed in this paper. POROUS RGO@Ni nanocomposites were synthesized by a simple one-pot method based on solvothermal treatment of Ni(acac)2 and graphene oxide without adding additional reducing agents. The structure and morphology of the as-prepared hybrid materials were characterized by XRD, Raman spectroscopy, XPS, VSM, SEM and TEM. The results show that uniform Ni spheres of about 900 nm in diameter homogeneously distributed on graphene sheets and form a porous structure. The electromagnetic data demonstrated that RGO@Ni nanocomposites exhibited significantly excellent electromagnetic wave (EMW) absorption properties, probably originating from the unique 3D porous structure and synergistic effect. The minimum reflection loss (RLmin) and maximum effective absorption bandwidth (EAB) of RGO@Ni nanocomposites are -61.2 dB and 6.6 GHz, respectively.

Key wordscomposite    electromagnetic wave absorption performance    solvothermal    three-dimensional grapheme    magnetic nanoparticles
收稿日期: 2020-05-28     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51303106);大连市科技创新基金重大项目(2019J11CY007);中央高校基本科研基金(DUT20TD207);兴辽英才项目(XLYC1807003);兴辽英才项目(XLYC1802085);三束材料改性教育部重点实验室基金(KF2004)
作者简介: 刘佳良,男,1996年生,硕士生
图1  合成多孔磁性RGO@Ni复合材料的示意图
图2  GO、RGO、Ni以及RGO@Ni复合材料的XRD谱图
图3  石墨、GO和RGO@Ni复合材料的拉曼谱图
图4  RGO@Ni的XPS全光谱、RGO@Ni的Ni 2p光谱、RGO@Ni的C 1s频谱以及GO的C 1s光谱
图5  RGO@Ni的SEM照片和TEM照片
图6  Pure Ni、RGO以及RGO@Ni.的三维反射率图像和2.2 mm处Ni、RGO和RGO@Ni的RL值
图7  纯N、纯RGO和RGO@Ni复合材料的介电常数
图8  介电损耗正切、磁损耗正切(tanδμ)、Cole-Cole半圆(ε′对ε″)以及1~18 GHz频率范围的C0值
图9  Ni、RGO和RGO@Ni复合材料的衰减系数和阻抗匹配系数
[1] Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties [J]. Nanoscale, 2014, 6: 2447
doi: 10.1039/c3nr05238a pmid: 24452196
[2] Ma X H, Li Y, Shen B, et al. Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2018, 10: 38255
doi: 10.1021/acsami.8b15545 pmid: 30360062
[3] Song W L, Guan X T, Fan L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding [J]. J. Mater. Chem., 2015, 3A: 2097
[4] Li X Y, Huang X L, Liu D P, et al. Synthesis of 3D hierarchical Fe3O4/Graphene composites with high lithium storage capacity and for controlled drug delivery [J]. J. Phys. Chem., 2011, 115C: 21567
[5] Xu D W, Xiong X H, Chen P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties [J]. J. Magn. Magn. Mater., 2019, 469: 428
[6] Zeng Q, Xiong X H, Chen P, et al. Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance [J]. J. Mater. Chem., 2016, 4C: 10518
[7] Zeng Q, Chen P, Yu Q, et al. Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties [J]. Chin. J. Mater. Res., 2018, 32: 119
[7] (曾强, 陈平, 于祺等. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装 [J]. 材料研究学报, 2018, 32: 119)
[8] Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32: 161
[8] (褚海荣, 陈平, 于祺等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32: 161)
[9] Liu J, Cao M S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature [J]. ACS. Appl. Mater. Interfaces, 2016, 8: 22615
pmid: 27509241
[10] Liu P B, Huang Y. Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties [J]. J. Polym. Res., 2014, 21: 430
[11] Qiu B C, Xing M Y, Zhang J L. Recent advances in three-dimensional graphene based materials for catalysis applications [J]. Chem. Soc. Rev., 2018, 47: 2165
doi: 10.1039/c7cs00904f pmid: 29412198
[12] Han M K, Yin X W, Kong L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem., 2014, 2A: 16403
[13] Kim T Y, Jung G, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores [J]. ACS Nano, 2013, 7: 6899
doi: 10.1021/nn402077v pmid: 23829569
[14] Tong G X, Hu Q, Wu W H, et al. Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties [J]. J. Mater. Chem., 2012, 22: 17494
doi: 10.1039/c2jm31790g
[15] Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
[16] Chu H R, Zeng Q, Chen P, et al. Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method [J]. J. Alloys Compd., 2017, 719: 296
doi: 10.1016/j.jallcom.2017.05.199
[17] Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem., 2015, 3C: 10232
[18] Zong M, Huang Y, Zhao Y, et al. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites [J]. RSC Adv., 2013, 3: 23638
[19] Zhou M, Zhang X, Wei J M, et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures [J]. J. Phys. Chem., 2011, 115C: 1398
[20] Sun G B, Dong B X, Cao M H, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption [J]. Chem. Mater., 2011, 23: 1587
[21] Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties [J]. Nano Res., 2017, 10: 331
[22] Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11108
pmid: 29514457
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.