Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 659-664    DOI: 10.11901/1005.3093.2020.126
  研究论文 本期目录 | 过刊浏览 |
低能大流强氢离子辐照对钨的刻蚀行为
玄京凡, 范红玉(), 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元(), 牛金海
大连民族大学 辽宁省等离子技术重点实验室 大连 116600
Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions
XUAN Jingfan, FAN Hongyu(), BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan(), NIU Jinhai
Liaoning Key Laboratory of Plasma Technology, Dalian Minzu University, Dalian 116600, China
引用本文:

玄京凡, 范红玉, 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元, 牛金海. 低能大流强氢离子辐照对钨的刻蚀行为[J]. 材料研究学报, 2020, 34(9): 659-664.
Jingfan XUAN, Hongyu FAN, Ying BAI, Ruihang HU, Xinyang LI, Wenchen TAO, Weiyuan NI, Jinhai NIU. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. Chinese Journal of Materials Research, 2020, 34(9): 659-664.

全文: PDF(18017 KB)   HTML
摘要: 

在聚变相关的钨(W)偏滤器辐照下,研究了低能大流强氢(H)离子辐照对多晶钨材料的刻蚀行为。使用扫描电子显微镜(SEM)、导电原子力显微镜和基于SEM的电子背散射衍射等手段研究了大流强(~1022 ions/m2·s)、剂量为1.0×1026 ions/m2、能量为5~200 eV的氢离子辐照对多晶W材料表面刻蚀行为的影响。结果表明,随着H离子辐照能量的增加W的溅射率迅速提高,W表面发生刻蚀后产生条纹状结构,而且同一晶粒上条纹的方向具有一致性,条纹两侧的缺陷分布明显不同,意味着W表面的刻蚀优先沿某一特定晶面方向进行。

关键词 金属学多晶钨氢离子辐照刻蚀    
Abstract

Regarding to conditions of the fusion-related tungsten (W) divertor, the etching behavior of polycrystalline W under the irradiation of low-energy and high-flux hydrogen ions, namely the flux of ca 1022 ions/m2·s, dose of 1.0×1026 ions/m2 and energy of 5~200 eV was investigated by means of scanning electron microscopy SEM with EBSD and conductive atomic force microscopy. The findings suggest that the sputtering yield of W is strongly dependent on the ions energy, the sputtering rate increases rapidly with the increase of H ions energy; After irradiation, a texture of parallel stripes with a special orientation for every grain may emerge on the irradiated surface, but the distribution of defects on both sides of every stripe is obviously different, which means that the etching of W surface is preferentially occur along a certain face of W crystal grains.

Key wordsmetallography    polycrystalline tungsten    H ions irradiation    erosion
收稿日期: 2020-04-17     
ZTFLH:  TG14  
基金资助:国家自然科学基金(11405023);辽宁省自然科学基金(20180510006);辽宁省自然科学基金(2019-ZD-018);大连市青年科技之星项目(2017RQ149);大连民族大学大学生创新创业训练项目(202012026596);大连民族大学“太阳鸟”学生科研项目(tyn2020302)
作者简介: 玄京凡,女,2001年生,本科生
图1  H等离子体发射光谱诊断
图2  不同H离子能量辐照下W表面的SEM照片
图3  200 eV的 H离子辐照后W表面的SEM照片和对应的EBSD图
图4  W溅射率随H离子能量的变化
图5  采用导电原子力显微镜分析不同离子能量辐照后钨的表面形貌(左图)和缺陷电流分布图像(右图)
[1] Knaster J, Moeslang A, Muroga T. Materials research for fusion [J]. Nat. Phy., 2016, 12:424
[2] Jiang M, Xu G, Xiao C, et al. Characteristics of edge-localized modes in the experimental advanced superconducting tokamak (EAST) [J]. Plasma Phys. Control. Fusion, 2012, 54: 095003
[3] Wagner F, Becker G, Behringer K, et al. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak [J]. Phys. Rev. Lett., 1982, 49: 1408
[4] ITER physics expert groups on confinement and transport and confinement modelling and database [J]. ITER Physics Basis Editors, Nucl. Fusion, 1999, 39: 2175
[5] Shimada M, Costley A E, Federici G, et al. Overview of goals and performance of ITER and strategy for plasma-wall interaction investigation [J]. J. Nucl. Mater., 2005, 337: 808
[6] Gary S W. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. Springer-Verlag, New York, 2007, 17
[7] Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001
[8] Bi Z, Liu D, Zhang Y, et al. The evolution of He nanobubbles in tungsten under fusion-relevant He ion irradiation conditions [J]. Nucl. Fusion, 2019, 59: 086025
[9] Shimada Masashi, Hatano Y, Oya Y, et al. Overview of the US-Japan collaborative investigation on hydrogen isotope retention in neutron-irradiated and ion-damaged tungsten [J]. Fusion Engineering and Design. 2012,87: 1166
[10] Sefta F, Juslin N, Hammond K D, et al. Molecular dynamics simulations on the effect of sub-surface helium bubbles on the sputtering yield of tungsten [J]. J. Nucl. Mater. 2013, 438: S493
[11] Ferroni F, Hammond K D, Wirth B D. Sputtering yields of pure and helium-implanted tungsten under fusion-relevant conditions calculated using molecular dynamics [J]. J. Nucl. Mater. 2015, 458: 419
[12] Yoshida N, Hirooka Y, Impacts of charge-exchange neutrals on degradation of plasma-facing materials [J]. J. Nucl. Mater. 1997, 258-263: 173
[13] Yang Q, You Y W, Liu L., et al. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation [J]. Sci. Rep. 2015, 5: 10959
doi: 10.1038/srep10959 pmid: 26077598
[14] Fan H, Yang D, Sun L, et al. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy [J]. Nucl. Instrum. Meth. B, 2013, 312: 90
[15] YANG Ming, FAN Hongyu, XIE Xiaodong, et al. Effect of high energy W6+ pre-implantation on surface microstructure of tungsten irradiated by low-energy hydrogen ions [J]. Chinese Journal of Materials Research, 2016, 30(4): 277
[15] (杨铭, 范红玉, 解晓东等. 高能W6+预辐照对钨表面微结构的影响 [J]. 材料研究学报, 2016, 30(4): 277)
[1] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[3] 王益浩, 吴琼, 李鹏飞, 杨占鑫, 张洪涛. 高比容少层MXene Ti3C2 的制备及其超级电容性能[J]. 材料研究学报, 2022, 36(3): 183-190.
[4] 胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
[5] 施渊吉,于林惠,于照鹏,成功,吴晓春,滕宏春. 热作模具钢DM的高温稳定性和热疲劳性能[J]. 材料研究学报, 2020, 34(2): 125-136.
[6] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[7] 涂坚,刘雷,丁石润,李建波,周志明,董安平,黄灿. 预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响[J]. 材料研究学报, 2019, 33(6): 427-434.
[8] 安欢,伍建春,张仲,王欢,孙华,展长勇,邹宇. 电化学刻蚀参数对高阻厚壁宏孔硅阵列表面形貌的影响[J]. 材料研究学报, 2019, 33(3): 177-184.
[9] 吴良,范红玉,倪维元,许洋,鲍森,张雨薇,周思倩,牛金海. 氦离子辐照下钨纳米丝的自保护行为[J]. 材料研究学报, 2019, 33(11): 809-814.
[10] 郝志玲,范红玉,郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇. He等离子体辅助的纳米钨结构材料的制备[J]. 材料研究学报, 2017, 31(6): 415-421.
[11] 袁超廷;高尚林;牟其伍;丁亦平. 超高分子量聚乙烯纤维的等离子体表面处理[J]. 材料研究学报, 1992, 6(5): 427-434.