Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 650-658    DOI: 10.11901/1005.3093.2020.150
  研究论文 本期目录 | 过刊浏览 |
铁电极化诱导的PbTiO3薄膜的取向聚集生长和晶粒尺寸调控
武梦姣1, 任召辉1(), 田鹤2, 韩高荣1
1.浙江大学材料科学与工程学院 硅材料国家重点实验室 杭州 310027
2.浙江大学材料科学与工程学院 电子显微镜中心 杭州 310027
Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control
WU Mengjiao1, REN Zhaohui1(), TIAN He2, HAN Gaorong1
1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2. Center of Electron Microscope, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

武梦姣, 任召辉, 田鹤, 韩高荣. 铁电极化诱导的PbTiO3薄膜的取向聚集生长和晶粒尺寸调控[J]. 材料研究学报, 2020, 34(9): 650-658.
Mengjiao WU, Zhaohui REN, He TIAN, Gaorong HAN. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. Chinese Journal of Materials Research, 2020, 34(9): 650-658.

全文: PDF(16293 KB)   HTML
摘要: 

用溶胶凝胶法制备了PbTiO3薄膜。将含量为0.2%、0.5%和0.8%(摩尔比)的钙钛矿铁电PbTiO3纳米片加入溶胶体系中,利用纳米片的自发极化调控薄膜的生长。结果表明,纳米片的加入显著影响了薄膜的生长过程和结晶学取向,可制备出(100)高度取向的PbTiO3薄膜;改变纳米片的浓度,可将薄膜晶粒尺寸由100 nm调控到2 μm。扫描电子显微镜(SEM)、透射电子显微镜(TEM)观测和原位X射线衍射(in-situ XRD)的结果表明,固态薄膜中的晶粒表现出类液相的取向聚集生长特征。其原因可能是,铁电纳米片极化表面的静电力诱导小晶粒的吸附和取向排列,调控了薄膜的(100)取向和晶粒尺寸。

关键词 无机非金属材料钛酸铅溶胶凝胶法铁电极化取向聚集生长    
Abstract

PbTiO3 (PTO) ferroelectric thin films were synthesized by a sol-gel process, where different concentration (0.2%, 0.5%, 0.8%, mole ratio) of PbTiO3 nanoplates with large spontaneous polarity were introduced to the sol system to manipulate the growth and microstructures of PbTiO3 films. The products were then characterized by means of X-ray diffractometer(XRD), scanning electron microscope (SEM), transmission electron microscope (TEM). The effect of PTO nanoplates on the growth mechanism of PTO films was investigated by in-situ XRD. It was found that nanoplates dramatically affected the growth process and crystallographic orientation of PbTiO3 films, giving rise to a preferred orientation of (100) in PbTiO3 films. In addition, an effective control of grain size of PbTiO3 films ranging from 100 nm to 2 μm has been realized by altering the concentration of nanoplates. According to results of SEM, TEM and in-situ XRD analysis, the grains in solid-state films exhibited the growth characteristics of orientation related gathering of gains, similar to that in liquid phase. This growth behavior can be attributed to the strong electrostatic force originated from polar surfaces of nanoplates, which induced the adsorption and oriented alignment of small grains, accounting for the orientation and grain size evolution.

Key wordsinorganic non-metallic materials    lead titanate    sol-gel method    ferroelectric polarization    oriented attachment growth
收稿日期: 2020-05-03     
ZTFLH:  TB34  
基金资助:国家自然科学基金(U1909212);浙江省重点研发计划(2020C01124);中央高校基本科研业务费(2020FZZX002);中央高校基本科研业务费(2020-FZZX003)
作者简介: 武梦姣,女,1993年生,博士生
图1  纳米片的SEM照片、DTA和TGA曲线和横截面的ABF-STEM图
图2  添加不同含量纳米片制备的PTO薄膜的XRD图谱及其图中19-35o部分的放大图和(100)取向比例与纳米片含量的关系
图3  添加不同含量纳米片的PTO薄膜的SEM照片
图4  添加0.5%纳米片的PTO薄膜的断面TEM照片及其PTO薄膜的选取电子衍射图(SAED)、两个晶粒晶界区域的TEM照片及其方框区域的高倍TEM照片
图5  添加0.5%纳米片的PTO前驱体干燥凝胶粉末的DTA和TGA曲线
图6  添加0.5%纳米片的PTO前驱体干燥凝胶粉末在不同温度热处理后的FTIR图
图7  PTO前驱体凝胶膜的原位XRD图谱
图8  PTO薄膜中纳米片区域的SEM照片、PTO薄膜取向聚集生长四个过程的示意图以及OA生长的最终形貌
[1] Wang Y L, Zhao H Q, Zhang L X, et al. PbTiO3-based perovskite ferroelectric and multiferroic thin films [J]. Phys. Chem. Chem. Phys., 2017, 19: 17493
doi: 10.1039/c7cp01347g pmid: 28671205
[2] Martin L W, Rappe A M. Thin-film ferroelectric materials and their applications [J]. Nat. Rev. Mater., 2016, 2: 16087
[3] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications [J]. J. Appl. Phys., 2006, 100: 051606
[4] Ramesh R, Schlom D G. Orienting ferroelectric films [J]. Science, 2002, 296(5575): 1975
pmid: 12065821
[5] Mhin S, Nittala K, Cozzan C, et al. Role of the PbTiO3 seed layer on the crystallization behavior of PZT thin films [J]. J. Am. Ceram. Soc., 2015, 98(5): 1407
[6] Wang C C, Zhu J. A discussion on common characteristics of ferroelectricity, high temperature superconductivity and colossal magnetoresistance (CMR) effect [J]. Mater. Rev., 2002, 16(4): 16
[6] (汪春昌, 朱静. 铁电性、高温超导电性和庞磁电阻(CMR)效应的共性特征探讨 [J]. 材料导报, 2002, 16(4): 16)
[7] Börnstein L. Ferroelectrics and Related Substances: Oxides [M]. Berlin: Springer, 1981
[8] Guzmán G, Barboux P, Livage J, et al. Crystallization of textured PbTiO3 deposited from gels [J]. J Sol-Gel Sci Techn, 1994, 2(1): 619
[9] Lu X Y, Chen Z H, Cao Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films [J]. Nat. Commun., 2019, 10: 3951
pmid: 31477695
[10] Zhang S R, Zhu Y L, Tang Y L, et al. Giant polarization sustainability in ultrathin ferroelectric films stabilized by charge transfer [J]. Adv. Mater., 2017, 29(46): 1703543
[11] Saremi S, Xu R J, Dedon L R, et al. Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films [J]. Adv. Mater., 2016, 28(48): 10750
doi: 10.1002/adma.201603968 pmid: 27723127
[12] Chentir M -T, Utsugi S, Fujisawa T, et al. Small-strain (100)/(001)-oriented epitaxial PbTiO3 films with film thickness ranging from nano- to micrometer order grown on (100)CaF2 substrates by metal organic chemical vapor deposition [J]. J. Mater. Res., 2013, 28(5): 696
[13] Morioka H, Yamada T, Tagantsev A K, et al. Suppressed polar distortion with enhanced Curie temperature in in-plane 90o-domain structure of a-axis oriented PbTiO3 Film [J]. Appl. Phys. Lett., 2015, 106: 042905
[14] Muralt P, Maeder T, Sagalowicz L, et al. Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding [J]. J. Appl. Phys., 1998, 83(7): 3835
[15] Chi Q G, Li W L, Liu C Q, et al. Effect of TiOx seed layer on the texture and electric properties in La and Ca modified PbTiO3 thin films [J]. Thin Solid Films, 2009, 517(17): 4826
[16] Yang X, Wu X Q, Ren W, et al. Effects of LaNiO3 buffer layers on preferential orientation growth and properties of PbTiO3 thin films [J]. Ceram. Int., 2008, 34(4): 1035
doi: 10.1016/j.ceramint.2007.09.077
[17] Tang H, Zhou Z, Bowland C C, et al. Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions [J]. Nanotechnology, 2015, 26: 345602
pmid: 26243166
[18] Lu C J, Shen H M, Zhu Y P, et al. X-ray diffraction study on the grain-size-dependences of orientation and 90o-domain structure in oriented PbTiO3 thin films on (111) Pt [J]. Mater. Lett., 1997, 31(3): 189
doi: 10.1016/S0167-577X(96)00268-6
[19] Lu C J, Ren S B, Shen H M, et al. The effect of grain size on domain structure in unsupported thin films [J]. J. Phys.: Condens. Matter, 1996, 8(42): 8011
[20] Lu C J, Shen H M, Wang Y N, et al. Grain size effect on the phase transitions in oriented PbTiO3 thin films deposited by the sol-gel method on (111) Pt/Si [J]. Mater. Lett., 1998, 34(1): 5
doi: 10.1016/S0167-577X(97)00128-6
[21] Ren Z H, Wu M J, Chen X, et al. Electrostatic force-driven oxide heteroepitaxy for interface control [J]. Adv. Mater., 2018, 30(38): 1707017
doi: 10.1002/adma.v30.38
[22] Li W, Wang F, Li M, et al. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures [J]. Nano Energy, 2018, 45: 304
[23] Chao C Y, Ren Z H, Zhu Y H, et al. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates [J]. Angew. Chem. Int. Ed., 2012, 51(37): 9283
[24] Jia C L, Nagarajan V, He J Q, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films [J]. Nat. Mater., 2007, 6(1): 64
doi: 10.1038/nmat1808 pmid: 17173031
[25] Yin Z W. Dielectric Physics [M]. Beijing: Science Press, 2003
[25] (殷之文. 电介质物理学 第2版 [M]. 北京: 科学出版社, 2003)
[26] Bao D, Yao X, Wakiya N, et al. Structural, dielectric, and ferroelectric properties of PbTiO3 thin films by a simple sol-gel technique [J]. Mat. Sci. Eng B, 2002, 94: 269
[27] Zhang J, Huang F, Lin Z. Progress of nanocrystalline growth kinetics based on oriented attachment [J]. Nanoscale, 2010, 2(1): 18
doi: 10.1039/b9nr00047j pmid: 20648361
[28] Tartaj J, Fernández J F, Villafuerte-Castrejón M E. Preparation of PbTiO3 by seeding-assisted chemical sol-gel [J]. Mater. Res. Bull., 2001, 36(3): 479
doi: 10.1016/S0025-5408(01)00543-8
[29] Selbach S M, Wang G Z, Einarsrud M A, et al. Decomposition and crystallization of a sol-gel-derived PbTiO3 precursor [J]. J. Am. Ceram. Soc., 2007, 90(8): 2649
doi: 10.1111/jace.2007.90.issue-8
[30] Lin C T, Scanlan B W, McNeill J D, et al. Crystallization behavior in a low temperature acetate process for perovskite PbTiO3, Pb(Zr,Ti)O3, and (Pb1-x,Lax)(Zry,Ti1-y)1-x/4O3 bulk powders [J]. J. Mater. Res., 1992, 7(9): 2546
doi: 10.1557/JMR.1992.2546
[31] Mansoor M A, Ismail A, Yahya R, et al. Perovskite-structured PbTiO3 thin films grown from a single-source precursor [J]. Inorg. Chem., 2013, 52: 5624
pmid: 23627942
[32] Tang X G, Guo H K, Zhou Q F, et al. Synthesis and structure of nanocrystalline oxides based on PbTiO3 by sol-gel process [J]. Nanostruct. Mater., 1998, 10(2): 161
[33] Speight M V. Growth kinetics of grain-boundary precipitates [J]. Acta. Metall., 1968, 16(1): 133
[34] Kirchner H O K. Coarsening of Grain-Boundary Precipitates [J]. Metall. Mater. Trans B, 1971, 2(10): 2861
[35] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281(5379): 969
doi: 10.1126/science.281.5379.969 pmid: 9703506
[36] Penn R L, Banfield J F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2 [J]. Am. Mineral., 1998, 83: 1077
[37] Zhang J, Lin Z, Lan Y, et al. A multistep oriented attachment kinetics: Coarsening of ZnS nanoparticle in concentrated NaOH [J]. J. Am. Ceram. Soc., 2006, 128(39): 12981
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.