Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 92-104    DOI: 10.11901/1005.3093.2023.229
  研究论文 本期目录 | 过刊浏览 |
铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能
翁鑫1, 李琦琪1, 杨桂芳2, 吕源财1, 刘以凡1, 刘明华1,2()
1.福州大学环境与安全工程学院 福州 350116
2.莆田学院环境与生物工程学院 莆田 351100
Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics
WENG Xin1, LI Qiqi1, YANG Guifang2, LV Yuancai1, LIU Yifan1, LIU Minghua1,2()
1.College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
2.College of Environmental and Biological Engineering, Putian University, Putian 351100, China
引用本文:

翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
Xin WENG, Qiqi LI, Guifang YANG, Yuancai LV, Yifan LIU, Minghua LIU. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. Chinese Journal of Materials Research, 2024, 38(2): 92-104.

全文: PDF(10463 KB)   HTML
摘要: 

采用纤维素/杨梅单宁复合气凝胶(CBT)为载体,用浸渍和原位还原法制备铁负载纤维素/单宁吸附剂(Fe-CBT),使用扫描电镜、傅里叶红外光谱和X射线能谱等手段对其表征,研究了三种典型氟喹诺酮类(FQs)抗生素诺氟沙星(NOR)、盐酸洛美沙星(LOM)和盐酸左氧氟沙星(LVX)的静态吸附性能。结果表明:共存阳离子Na+、K+、Mg2+和Ca2+都对吸附过程有明显的干扰。吸附过程是自发进行的放热反应,主要为单分子层吸附,而化学吸附是主要的限速步骤。准二级和Langmuir模型能很好地拟合这种吸附行为。这种吸附剂在298 K对NOR、LOM和LVX的最大理论吸附量分别达到99.07、74.17和40.14 mg/g。NaOH和NaCl对Fe-CBT都表现出较优的洗脱效果,用NaOH和NaCl溶液4次再生后Fe-CBT对NOR的吸附能力仍高于70%。Fe-CBT对FQs的去除,主要是静电引力、表面络合、氢键和π-π堆积间的协同作用造成的。

关键词 有机高分子材料铁负载纤维素复合气凝胶氟硅诺酮类抗生素单宁吸附    
Abstract

The absorbent of Fe-loaded cellulose/bayberry tannin (Fe-CBT) was prepared via impregnation and in-situ reduction process, with cellulose/tannin composite aerogel (CBT) as the carrier, which then was characterized by means of scanning electron microscopy, Fourier infrared spectroscopy and X-ray energy dispersive spectroscopy. Afterwards, the adsorption characteristic of the Fe-CBT was comparatively assessed for three typical fluoroquinolones (FQs) antibiotics, i.e., norfloxacin (NOR), lomefloxacin hydrochloride (LOM) and levofloxacin hydrochloride (LVX). The results show that the coexistence of cations Na+, K+, Mg2+ and Ca2+ all interferes significantly with the adsorption process. Moreover, the adsorption process is an exothermic reaction that proceeds spontaneously, mainly as single-molecule layer adsorption, of which chemisorption is the main rate-limiting step. The quasi-secondary and Langmuir models are demonstrated to fit this adsorption behavior, and the maximum theoretical adsorption capacity of 99.07, 74.17 and 40.14 mg/g can be achieved for NOR, LOM and LVX at 298 K, respectively. Both NaOH and NaCl show superior elution effect on Fe-CBT, namely, after re-generation for four times with NaOH and NaCl solutions, the adsorption capacity of Fe-CBT on NOR could even be maintained > 70%. In addition, it is found that the removal of FQs by Fe-CBT is caused by the synergy between electrostatic gravitation, surface complexation, hydrogen bonding and π-π stacking.

Key wordsorganic polymer materials    Fe-loaded    cellulose composite aerogel    fluoroquinolones antibiotics    tannin    adsorption
收稿日期: 2023-04-17     
ZTFLH:  TQ424  
基金资助:国家自然科学基金(22278082)
通讯作者: 刘明华,教授,mhliu2000@fzu.edu.cn,研究方向为生物质基材料和水污染控制新材料的制备及应用
Corresponding author: LIU Minghua, Tel: 13305022089, E-mail: mhliu2000@fzu.edu.cn
作者简介: 翁 鑫,男,1999年生,硕士生
图1  CBT和Fe-CBT的扫描电镜照片
图2  Fe-CBT的扫描电镜照片、EDS元素分布分析及EDS图谱
图3  CP、CBT和Fe-CBT的XRD谱
图4  BT、CP、CBT和Fe-CBT的FT-IR谱
图5  CBT和Fe-CBT的N2吸附-脱附等温曲线
图6  CP,BT,CBT和Fe-CBT的热重曲线
图7  硼氢化钠还原前后吸附剂的XPS高分辨谱
图8  初始溶液的pH值对NOR、LOM和LVX在Fe-CBT上的吸附性能的影响
图9  在不同pH值条件下NOR的分子形态和Fe-CBT的Zeta电位
图10  NOR的分子结构
图11  Fe-CBT在不同温度下对FQs的吸附等温模型拟合
PollutantT / KLangmuirFreundlichTempkin
qm / mg·g-1KLR2nKfR2R2
NOR298.1599.070.10140.98962.2616.600.96430.9636
308.1593.710.07450.99272.0712.300.96830.9653
318.1588.360.05170.99771.878.450.98150.9807
328.1575.670.04310.99591.836.380.98770.9791
LOM298.1574.170.11790.99112.5715.020.96360.9870
308.1569.360.09950.99172.4412.480.97810.9917
318.1565.950.07190.99602.229.320.96700.9901
328.1560.700.05880.99292.107.310.95650.9881
LVX298.1540.140.15740.99433.0910.580.95060.9974
308.1539.490.10430.99862.677.960.95720.9990
318.1536.200.08910.99832.556.560.95220.9990
328.1531.830.08100.99642.495.430.95080.9988
表1  在不同温度下Fe-CBT对NOR、LOM和LVX的等温吸附模型拟合参数
AdsorbentPollutantqm / mg·g-1Ref.
NCZMLVX35.98[33]
KaoliniteLOM2.68[34]
HABNOR9.97[35]
NR-CGFNOR88.43[36]
MIL-101(Cr)-NH2NOR92.50[37]
Fe-CBTNOR99.07This study
LOM74.17
LVX40.14
表2  与其它吸附剂对FQs类抗生素吸附能力的对比
PollutantT/KResultΔG / kJ·mol-1ΔS / J·(mol·K)-1ΔH / kJ·mol-1
NOR298.15

y = 3374x - 9.483

R2 = 0.9954

-4.549-78.82-28.05
308.15-3.761
318.15-2.973
328.15-2.185
LOM298.15

y = 2520x - 6.936

R2 = 0.9951

-3.749-57.70-20.95
308.15-3.172
318.15-2.595
328.15-2.018
LVX298.15

y = 2148x - 6.319

R2 = 0.9953

-2.190-52.54-17.86
308.15-1.664
318.15-1.139
328.15-0.614
表3  Fe-CBT对NOR、LOM和LVX的吸附热力学参数
图12  Van't Hoff热力学方程拟合结果
图13  Fe-CBT对NOR、LOM和LVX的吸附动力学
PollutantPseudo-first-order kinetic modelPseudo-second-order kinetic model
K1qeR2K1qeR2
NOR1.123 × 10-216.870.86531.023 × 10-342.110.9961
LOM1.114 × 10-219.740.89131.132 × 10-339.280.9992
LVX1.209 × 10-212.900.91741.970 × 10-326.390.9995
表4  Fe-CBT对NOR、LOM和LVX的吸附动力学参数
图14  无机阳离子对Fe-CBT的NOR吸附性能的影响
图15  Fe-CBT对NOR吸附的循环再生性能
图16  Fe-CBT吸附NOR、LOM和LVX前后的FT-IR谱
图17  Fe-CBT吸附NOR前后的XPS谱
图18  Fe-CBT吸附TCs前后的XPS高分辨谱
1 Anonymous. Quinolone antibiotics [J]. Am. Pharm., 1992, NS 32(8): 27
2 Hooper D C, Jacoby G A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance [J]. Cold Spring Harb. Perspect. Med., 2016, 6(9): a025320
doi: 10.1101/cshperspect.a025320
3 Mathur P, Sanyal D, Callahan D L, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environment and human health [J]. Environ. Pollut., 2021, 291: 118233
doi: 10.1016/j.envpol.2021.118233
4 Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material [J]. Angew. Chem. Int. Ed., 2005, 44(22): 3358
doi: 10.1002/anie.v44:22
5 Li J W, Bendi R, Malla R, et al. Cellulose nanofibers-based green nanocomposites for water environmental sustainability: A review [J]. Emergent Mater., 2021, 4(5): 1259
doi: 10.1007/s42247-021-00300-8
6 Sayyed A J, Pinjari D V, Sonawane S H, et al. Cellulose-based nanomaterials for water and wastewater treatments: A review [J]. J. Environ. Chem. Eng., 2021, 9(6): 106626
doi: 10.1016/j.jece.2021.106626
7 Yao Y J, Yu M J, Yin H Y, et al. Tannic acid-Fe coordination derived Fe/N-doped carbon hybrids for catalytic oxidation processes [J]. Appl. Surf. Sci., 2019, 489: 44
doi: 10.1016/j.apsusc.2019.05.275
8 Ma W J, Ding Y C, Zhang M J, et al. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation [J]. J. Hazard. Mater., 2020, 384: 121476
doi: 10.1016/j.jhazmat.2019.121476
9 Setyono D, Valiyaveettil S. Chemically modified sawdust as renewable adsorbent for arsenic removal from water [J]. ACS Sustainable Chem. Eng., 2014, 2(12): 2722
doi: 10.1021/sc500458x
10 Shen Y, Chen B L. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water [J]. Environ. Sci. Technol., 2015, 49(12): 7364
doi: 10.1021/acs.est.5b01057
11 Luo H, Zhang S X, Li X Y, et al. Tannic acid modified Fe3O4 core-shell nanoparticles for adsorption of Pb2+ and Hg2+ [J]. J. Taiwan Inst. Chem. Eng., 2017, 72: 163
doi: 10.1016/j.jtice.2017.01.026
12 Liao H. Biomass-supported monodisperse n-Fe0@M0 preparation and basic research on application of uranium adsorption and reduction [D]. Mianyang: Southwest University of Science and Technology, 2021
12 廖 卉. 生物质负载型单分散性n-Fe0@M0制备及其铀吸附还原应用基础研究 [D]. 绵阳: 西南科技大学, 2021
13 Chen Q, Zheng J W, Zheng L C, et al. Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations [J]. Chem. Eng. J., 2018, 350: 1000
doi: 10.1016/j.cej.2018.06.054
14 Missio A L, Mattos B D, Ferreira D D F, et al. Nanocellulose-tannin films: From trees to sustainable active packaging [J]. J. Cleaner Prod., 2018, 184: 143
doi: 10.1016/j.jclepro.2018.02.205
15 Su J J. Study on the preparation and adsorption performance of polyethyleneimine modified cellulose adsorbent [D]. Nanning: Guangxi University, 2017
15 苏晶晶. 聚乙烯亚胺改性纤维素重金属吸附剂的制备及其吸附性能研究 [D]. 南宁: 广西大学, 2017
16 Peng X. Preparation of cellulose adsorbent materials and study on their adsorption performance towards hexavalent chromium and p-Arsanilic acid [D]. Guangzhou: South China University of Technology, 2020
16 彭 雄. 纤维素吸附材料的制备及其对六价铬和对氨基苯胂酸吸附性能研究 [D]. 广州: 华南理工大学, 2020
17 Zhao W J. Selective catalytic hydrogenation and depolymerization of lignin with Ni/MgO [D]. Guangzhou: South China University of Technology, 2018
17 赵伟杰. Ni/MgO催化木质素选择性加氢解聚 [D]. 广州: 华南理工大学, 2018
18 Campa M C, Doyle A M, Fierro G, et al. Simultaneous abatement of NO and N2O with CH4 over modified Al2O3 supported Pt, Pd, Rh [J]. Catal. Today, 2022, 384-386: 76
doi: 10.1016/j.cattod.2021.06.020
19 Xu Q H, Wang Y L, Jin L Q, et al. Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose [J]. J. Hazard. Mater., 2017, 339: 91
doi: 10.1016/j.jhazmat.2017.06.005
20 Taksitta K, Sujarit P, Ratanawimarnwong N, et al. Development of tannin-immobilized cellulose fiber extracted from coconut husk and the application as a biosorbent to remove heavy metal ions [J]. Environ. Nanotechnol., Monit. Manage., 2020, 14: 100389
21 Zhou P. Research on preparation and adsorption property of tannin-immobilized cellulose resin [D]. Jishou: Jishou University, 2019
21 周 鹏. 纤维素固化单宁树脂的制备及吸附性能研究 [D]. 吉首: 吉首大学, 2019
22 Pei Y, Xu G Q, Wu X, et al. Removing Pb(II) ions from aqueous solution by a promising absorbent of tannin-immobilized cellulose microspheres [J]. Polymers, 2019, 11(3): 548
doi: 10.3390/polym11030548
23 Özacar M, Soykan C, Şengi̇l İ A. Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins [J]. J. Appl. Polym. Sci., 2006, 102(1): 786
doi: 10.1002/app.v102:1
24 Ju L X, Li F, Ning X, et al. Durable antibacterial finishing on kapok fibrous nonwovens with Polydopamine/PEI assisted immobilization of silver [J]. Fibers Polym., 2021, 22(9): 2440
doi: 10.1007/s12221-021-1225-1
25 Conde-González J E, Lorenzo-Luis P, Salvadó V, et al. A new cotton functionalized with iron(III) trimer-like metal framework as an effective strategy for the adsorption of triarylmethane dye: An insight into the dye adsorption processes [J]. Heliyon, 2021, 7(12): e08524
doi: 10.1016/j.heliyon.2021.e08524
26 Peng S, Fan L L, Wei C Z, et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes [J]. Carbohydr. Polym., 2017, 157: 344
doi: 10.1016/j.carbpol.2016.10.004
27 Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254(8): 2441
doi: 10.1016/j.apsusc.2007.09.063
28 Ozawa H, Haga M A. Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions [J]. Phys. Chem. Chem. Phys., 2015, 17(14): 8609
doi: 10.1039/c5cp00264h pmid: 25743482
29 Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides [J]. Environ. Sci. Technol., 2005, 39(23): 9166
doi: 10.1021/es051109f
30 Tolls J. Sorption of veterinary pharmaceuticals in soils: A review [J]. Environ. Sci. Technol., 2001, 35(17): 3397
doi: 10.1021/es0003021
31 Zhang H C, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite [J]. Chemosphere, 2007, 66(8): 1502
pmid: 17083963
32 Ashiq A, Vithanage M, Sarkar B, et al. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review [J]. Environ. Res., 2021, 197: 111091
doi: 10.1016/j.envres.2021.111091
33 Chen Z, Ma W, Lu G, et al. Adsorption of levofloxacin onto mechanochemistry treated zeolite: Modeling and site energy distribution analysis [J]. Sep. Purif. Technol., 2019, 222: 30
doi: 10.1016/j.seppur.2019.04.010
34 Bian X Y, Bi E P. Sorption characteristics of different forms of lomefloxacin on kaolinite [J]. Earth Sci. Front., 2019, 26(4): 279
doi: 10.13745/j.esf.sf.2019.5.31
34 卞馨怡, 毕二平. 不同形态洛美沙星在高岭土上的吸附特性 [J]. 地学前缘, 2019, 26(4): 279
doi: 10.13745/j.esf.sf.2019.5.31
35 Zhao J, Liang G W, Zhang X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water [J]. Sci. Total Environ., 2019, 688: 1205
doi: 10.1016/j.scitotenv.2019.06.287
36 Yi L S, Liang G W, Xiao W L, et al. Rapid nitrogen-rich modification of Calotropis gigantea fiber for highly efficient removal of fluoroquinolone antibiotics [J]. J. Mol. Liq., 2018, 256: 408
doi: 10.1016/j.molliq.2018.02.060
37 Guo X Y, Kang C F, Huang H L, et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water [J]. Microporous Mesoporous Mater., 2019, 286: 84
doi: 10.1016/j.micromeso.2019.05.025
38 Ahmed M J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review [J]. Environ. Toxicol. Pharmacol., 2017, 50: 1
doi: 10.1016/j.etap.2017.01.004
39 Azzam A M, El-Wakeel S T, Mostafa B B, et al. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles [J]. J. Environ. Chem. Eng., 2016, 4(2): 2196
doi: 10.1016/j.jece.2016.03.048
40 Luo C, Tian Z, Yang B, et al. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal [J]. Chem. Eng. J., 2013, 234: 256
doi: 10.1016/j.cej.2013.08.084
41 Wan Y B, Liu X, Liu P L, et al. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: Kinetic, equilibrium and adsorption mechanism studies [J]. Sci. Total Environ., 2018, 639: 428
doi: 10.1016/j.scitotenv.2018.05.171
42 Wang J P, Zhang M, Zhou R J, et al. Adsorption characteristics and mechanism of norfloxacin in water by γ-Fe2O3@BC [J]. Water Sci. Technol., 2020, 82(2): 242
43 Liu Q J, Ma P L, Liu P L, et al. Green synthesis of stable Fe, Cu oxide nanocomposites from loquat leaf extracts for removal of Norfloxacin and Ciprofloxacin [J]. Water Sci. Technol., 2020, 81(4): 694
doi: 10.2166/wst.2020.152
44 Ma Y F, Li P, Yang L, et al. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal [J]. Ecotoxicol. Environ. Saf., 2020, 196: 110550
doi: 10.1016/j.ecoenv.2020.110550
45 Jiang W, Cui W R, Liang R P, et al. Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics [J]. J. Hazard. Mater., 2021, 413: 125302
doi: 10.1016/j.jhazmat.2021.125302
46 Tan H L, Zhang L, Ma C J, et al. Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids [J]. ACS Appl. Mater. Interfaces, 2013, 5(22): 11791
doi: 10.1021/am403442q
47 Li Y, Taggart M A, McKenzie C, et al. Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations [J]. J. Cleaner Prod., 2019, 227: 88
doi: 10.1016/j.jclepro.2019.04.081
48 Che G Q, Zhang Q Y, Lin L, et al. Unraveling influence of metal species on norfloxacin removal by mesoporous metallic silicon adsorbent [J]. Environ. Sci. Pollut. Res., 2020, 27(28): 35638
doi: 10.1007/s11356-020-09829-3
[1] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[5] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[7] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[8] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[9] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[10] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[11] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[12] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[13] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[14] 余谟鑫, 蒯乐, 王亮, 张晨, 王晓婷, 陈启厚. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能[J]. 材料研究学报, 2021, 35(9): 667-674.
[15] 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能[J]. 材料研究学报, 2021, 35(7): 517-525.