Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 628-634    DOI: 10.11901/1005.3093.2021.420
  研究论文 本期目录 | 过刊浏览 |
力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性
杨琴1(), 王振1, 房春娟2, 王若迪1, 高大航1
1.西安建筑科技大学化学与化工学院 西安 710055
2.西安建筑科技大学理学院 西安 710055
Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties
YANG Qin1(), WANG Zhen1, FANG Chunjuan2, WANG Ruodi1, GAO Dahang1
1.School of Chemistry and Chemical Engineering, Xi' an University of Architecture and Technology, Xi' an 710055, China
2.School of Science, Xi' an University of Architecture and Technology, Xi' an 710055, China
引用本文:

杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
Qin YANG, Zhen WANG, Chunjuan FANG, Ruodi WANG, Dahang GAO. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. Chinese Journal of Materials Research, 2022, 36(8): 628-634.

全文: PDF(3583 KB)   HTML
摘要: 

以八元瓜环、膨润土为双交联剂制备了力学性能可控的羧甲基纤维素/丙烯酸/八元瓜环/膨润土水凝胶(CMC/AA/CB[8]/BET gel)。采用FT-IR、SEM技术表征其结构和形貌,研究了这种凝胶的力学性能和吸附性能以及溶胀和吸附动力学。结果表明:CB[8]和BET通过氢键与接枝到CMC上的AA形成致密的网络结构,使凝胶的力学性能增强;这种凝胶的溶胀符合准二级动力学模型,并与应力松弛溶胀半结晶聚合物理论相符;这种凝胶在酸中浸泡后酸中的游离H+与CB[8]、BET生成的氢键使凝胶的断裂强度从0.52 MPa显著提高到3.0 MPa;这种凝胶对亚甲基蓝有良好的吸附效果,符合准二级动力学模型。

关键词 高分子材料羧甲基纤维素水凝胶力学性能动力学吸附    
Abstract

Hydrogel of (CMC/AA/CB[8]/BET gel) with controllable mechanical properties was prepared with carboxymethyl cellulose and acrylic acid as raw material, while octagon melon ring and bentonite as double crosslinking agent. The structure and morphology of the prepared gel were characterized by FT-IR and SEM. The mechanical properties, adsorption properties, swelling and adsorption kinetics of the gel were investigated. The results show that CB[8] and BET formed a dense network structure through hydrogen bonding with AA grafted to CMC, which enhanced the mechanical properties of the gel;The swelling of the gel conforms to the quasi-second-order kinetic model and the theory of stress relaxation swelling hemicrystalline polymer; After the gel was soaked in acid, the hydrogen bond between the free H+ in the acid and CB[8] and BET significantly increased the breaking strength of the gel from 0.52 MPa to 3.0 MPa; The gel has a good adsorption effect on methylene blue, which accords with the quasi-second-order kinetic model.

Key wordspolymer materials    carboxymethyl cellulose hydrogel    mechanical properties    kinetics    adsorption
收稿日期: 2021-07-26     
ZTFLH:  TQ430  
基金资助:陕西省自然科学基金(2019JM-541)
作者简介: 杨 琴,女,1974年生,博士
图1  AA、CMC/AA/CB[8]/BET凝胶的红外吸收曲线
图2  不同组分水凝胶的扫描电镜照片
图3  CMC/AA/CB[8]/BET gel生成的示意图
图4  CMC/AA /CB[8]/BET gel的溶胀动力学曲线和溶胀线性拟合曲线
图5  不同组分水凝胶的拉伸应力-应变曲线
图6  酸浸泡前后CMC/AA/CB[8]/BET gel的应力-应变曲线
图7  CMC/AA/CB[8]/BET gel在中性和酸性条件下对MB的去除率和吸附量曲线
图8  CMC/AA/CB[8]/BET gel对MB的吸附速率和吸附量曲线
Quasi-first-order kinetic equationQuasi-second-order kinetic equation
qexp/mg·g-1k1/min-1 qe/mg·g-1 R2k2/mg·g-1·min-1qe/mg·g-1R2
19.72.867 3.2638 0.97402.008 67.4 0.9999
表1  CMC/AA/CB[8]/BET gel吸附MB染料的动力学参数
1 Sinha V, Chakma S. Advances in the preparation of hydrogel for wastewater treatment: a concise review [J]. J. Environ. Chem. Eng., 2019, 7(5): 103295
doi: 10.1016/j.jece.2019.103295
2 Basta A H, El-Saied H, Hasanin M S, et al. Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications [J]. Int. J. Biol. Macromol., 2018, 107(Pt.A): 1364
3 Ahmad M, Manzoor K, Ahmad S, et al. Preparation, kinetics, thermodynamics and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu (II) adsorbent [J]. J. Chem. Eng. Data., 2018, 63(6): 1905
doi: 10.1021/acs.jced.7b01008
4 Ahmed, Salama, Nadia, et al. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal [J]. Int. J. Biol. Macromol., 2015, 73(1): 72
doi: 10.1016/j.ijbiomac.2014.11.002
5 Vk A, Kv B, Tj C, et al. Carboxymethyl cellulose-based materials for infection control and wound healing: a review [J]. Int. J. Biol. Macromol., 2020, 164: 963
doi: 10.1016/j.ijbiomac.2020.07.160
6 Lai C, Tu M, Xia C, et al. Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass [J]. Energy Fuels., 2017, 31(11): 12317
doi: 10.1021/acs.energyfuels.7b02405
7 Ab A, Esb C, Mtc D, et al. Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity [J]. Int. J. Biol. Macromol., 2020, 163: 2465
doi: 10.1016/j.ijbiomac.2020.09.169
8 Suriyatem R, Noikang N, Kankam T, et al. Physical properties of carboxymethyl cellulose from palm bunch and bagasse agricultural wastes: effect of delignification with hydrogen peroxide [J]. Polymers, 2020, 12(7): 1505
doi: 10.3390/polym12071505
9 Yaradoddi J S, Banapurmath N R, Ganachari S V, et al. Biodegradable carboxymethyl cellulose based material for sustainable packaging application [J]. Sci. Rep., 2020, 10(1): 21960
doi: 10.1038/s41598-020-78912-z
10 Peng N, Hu D, Zeng J, et al. Superabsorbent cellulose-clay nanocomposite hydrogels for high efficient removal of dye in water [J]. ACS Sustain. Chem. Eng., 2016, 4(12): 7217
doi: 10.1021/acssuschemeng.6b02178
11 Zainal S H, Mohd N, Suhaili N, et al. Preparation of cellulose-based hydrogel: a review [J]. J. Mater. Sci. Technol., 2020, 10: 935
12 Tang Z W, Zhao M C, Wang Y, et al. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination [J]. Int. J. Biol. Macromol., 2020, 144: 127
doi: 10.1016/j.ijbiomac.2019.12.076
13 Lin F, Lu X, Wang Z, et al. In situ polymerization approach to cellulose-polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties [J]. Cellulose, 2019, 26(3): 1825
doi: 10.1007/s10570-018-2171-y
14 Jeong D, Kim C, Kim Y, et al. Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties [J]. Eur. Polym. J., 2020, 127: 109586
doi: 10.1016/j.eurpolymj.2020.109586
15 Li N, Chen G X, Chen W, et al. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength [J]. Carbohydr. Polym., 2017, 178: 159
doi: 10.1016/j.carbpol.2017.09.030
16 Jafarigol E, Salehi M B, Mortaheb H R. Preparation and assessment of electro-conductive poly (acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity [J]. Chem. Eng. Res. Des., 2020, 162: 74
doi: 10.1016/j.cherd.2020.07.020
17 Chen, W, Bu Y, Li D, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose [J]. Cellulose, 2020, 27: 853
doi: 10.1007/s10570-019-02797-z
18 Wang J H, Xue Y N, Wang Y Q, et al. High-strength and tough composite hydrogels reinforced by the synergistic effect of nano-doping and triple-network structures [J]. Eur. Polym. J., 2020, 142: 110122
doi: 10.1016/j.eurpolymj.2020.110122
19 Sinba V, Chakma S. Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution [J]. Environ. Sci. Technol., 2020, 17: 100620
20 Bagheri N, Lakouraj M M, Hasantabar V, et al. Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water [J]. J. Hazard. Mater., 2020, 403: 123631
doi: 10.1016/j.jhazmat.2020.123631
21 Bi Q, Hu Y P, Yang Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid [J]. Chin. J. Org. Chem., 2007, 27(7): 880
21 毕 强, 胡英鹏, 杨 琴 等. 水-盐酸两步分离瓜环混合物 [J]. 有机化学, 2007, 27(7): 880
22 Yang Q, Li X L, Jiang Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils [J]. Mater. Res. Innovations., 2014, 18(4): 280
doi: 10.1179/1433075X13Y.0000000136
23 Pekcan Ö. In situ fluorescence experiments to study swelling and slow release kinetics of disc-shaped poly (methyl methacrylate) gels made at various crosslinker densities [J]. Polymer, 1998, 39(22): 5351
doi: 10.1016/S0032-3861(97)10106-9
24 Schott H. Kinetics of swelling of polymers and their gels [J]. Journal of Pharmaceutical Science, 1992, 81(5)
25 Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties [J]. Eur. Polym. J., 2006, 42(9): 2125
doi: 10.1016/j.eurpolymj.2006.04.003
26 Yang Q, Fang C J, Zhao N, et al. Self-healing and swelling kinetics of a new polyacrylic acid hydrogels [J]. Chinese Journal of Materials Research, 2018, 32(8): 625
26 杨 琴, 房春娟, 赵 娜 等. 新型聚丙烯酸水凝胶的自愈及其溶胀动力学 [J]. 材料研究学报, 2018, 32(8): 625
27 Liu Y L, Su Y P, Yin Y, et al. Research progress of bentonite modified cementitious materials [J]. Materials Reports, 2021, 35(5): 5040
27 刘益良, 苏幼坡, 殷 尧 等. 膨润土改性胶凝材料的研究进展 [J]. 材料导报, 2021, 35(5): 5040
28 Chaudhuri S D, Mandal A, Dey A, et al. Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel [J]. Appl Clay Sci., 2020, 185: 105405
doi: 10.1016/j.clay.2019.105405
29 Liu C Y, Gao X P, Liu J, et al. Preparation and properties of sodium alginate/polyacrylamide/graphene oxide nanocomposite hydrogels [J]. Chinese Journal of Materials Research, 2015, 29(7): 517
29 刘翠云, 高喜平, 刘 捷 等. SA/PAM/GO纳米复合水凝胶的制备和性能 [J]. 材料研究学报, 2015, 29(7): 517
30 Zhang X Y, Zhao C Z, Xiang N P, et al. Chain entanglements and hydrogen bonds in carbopol microgel reinforced hydrogel [J]. Macromol Chem Phys, 2016, 217(19): 2139
doi: 10.1002/macp.201600245
31 Xiao J, Cui Y D, Fan H Q, et al. Preparation and action principle of pH-sensitive hydrogels [J]. Henan Chemical Industry, 2003, (08): 5
31 肖 君, 崔英德, 范会强 等. pH敏感性水凝胶的制备与作用原理 [J]. 河南化工, 2003, (08): 5
32 Liu X, Ma R, Wang X, et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review [J]. Environ. Pollut., 2019, 252: 62
doi: 10.1016/j.envpol.2019.05.050
33 Fazli W, Zhong C, Wang H S, et al. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles [J]. Polymers, 2017, 9(12): 636
doi: 10.3390/polym9120636
34 Shen X P, Shamshina J L, Berton P, et al. Hydrogels based on cellulose and chitin: fabrication, properties, and applications [J]. Green Chem., 2016, 18(1): 53
doi: 10.1039/C5GC02396C
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[14] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.