Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 837-844    DOI: 10.11901/1005.3093.2021.457
  研究论文 本期目录 | 过刊浏览 |
不同碳黑含量PMMA的热降解行为和动力学分析
龙庆, 王传洋()
苏州大学机电工程学院 苏州 215021
Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents
LONG Qing, WANG Chuanyang()
School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China
引用本文:

龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
Qing LONG, Chuanyang WANG. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. Chinese Journal of Materials Research, 2022, 36(11): 837-844.

全文: PDF(3903 KB)   HTML
摘要: 

用熔融共混法制备不同碳黑(CB)含量的聚甲基丙烯酸甲酯(PMMA)材料,根据固态反应动力学研究了这种材料的热降解行为。在不同升温速率的非等温热重分析(TGA)实验的基础上用Friedman、FWO、KAS和Freeman-Carroll四种方法构建了不同碳黑含量PMMA的热降解动力学模型,并将TGA实验数据与求解模型对比验证了模型的可靠性。结果表明:添加碳黑使PMMA的热分解温度和活化能提高,碳黑含量(质量分数)为0.1%时达到峰值;随着碳黑含量的提高PMMA的活化能先增大后减小,其最大提高量为17.76 kJ·mol-1,表明加入碳黑能在一定程度上提高PMMA的热稳定性。

关键词 有机高分子材料热降解动力学模型聚甲基丙烯酸甲酯碳黑活化能    
Abstract

Polymethyl methacrylate (PMMA) with different carbon black (CB) contents were prepared by melt blending. Based on the solid-state reaction kinetics, the thermal degradation behavior of PMMA with different CB contents was explored. Through non-isothermal thermogravimetric analysis (TGA) experiments under the conditions of different heating rates, the thermal degradation kinetic models of PMMA with different CB contents were built by four methods, including Friedman, FWO, KAS and Freeman-Carroll. The accuracy of models was verified by comparing with TGA experiments. The results show that PMMA with CB has higher thermal decomposition temperature and activation energy compared with pure PMMA. The PMMA with 0.1% CB presents the highest thermal stability. The activation energy of PMMA first rises and then falls down with increasing CB content, and the maximum increment is 17.76 kJ·mol-1, which proves that adding CB improves the thermal stability of PMMA to a certain extent.

Key wordsorganic polymer materials    thermal degradation kinetic model    polymethyl methacrylate    carbon black    activation energy
收稿日期: 2021-08-13     
ZTFLH:  TQ325.7  
基金资助:国家自然科学基金(52075354)
作者简介: 龙庆,女,1997年生,硕士生
MaterialDensity/kg∙(m3)-1Molar specific heat capacity/J∙(kg∙K)-1Thermal conductivity /W∙(m∙K)-1Viscous flow temperature/℃
PMMA119014700.21220
表1  PMMA的物理性能
图1  在不同升温速率下PMMA/0% CB的热稳定性曲线
图2  升温速率为5℃/min掺碳黑PMMA的热稳定性
图3  PMMA/0% CB四种等转化率曲线
CCB/%FriedmanFWOKAS
E/kJ·mol-1R2E/kJ·mol-1R2E/kJ·mol-1R2
0159.6080.9981166.7550.9834164.6200.9813
0.05161.4610.9927164.7890.9898162.5750.9885
0.10177.3710.9979175.7780.9994174.1240.9994
0.15169.7400.9976167.4710.9870165.3710.9853
0.20160.2120.9894158.3530.9881155.7960.9864
0.25157.2740.9945159.3490.9970156.8270.9965
表2  Friedman、FWO、KAS方法下不同碳黑含量PMMA的活化能E
β/℃·min-1Freeman-Carroll
CCB/%
00.050.10.150.20.25
nR2nR2nR2nR2nR2nR2
50.910.99980.620.99881.401.00001.381.00001.111.00000.380.9978
100.920.99981.071.00001.441.00001.371.00000.580.99900.950.9996
151.131.00001.520.99981.281.00001.441.00001.910.99861.201.0000
201.530.99960.950.99981.520.99961.600.99981.500.99961.450.9998
Average value1.120.99981.040.99961.410.99991.451.00001.270.99931.000.9993
表3  Freeman-carroll法下不同碳黑含量下PMMA的反应级数n
β/℃·min-1A×1012/min-1
CCB/%
00.050.10.150.20.25
52.88564.078887.24261.919720.88273.2088
102.88234.280288.18201.923721.21663.1756
152.75394.243394.97901.943520.18002.8766
202.77104.111282.33811.747819.16123.3272
Average value2.82324.178488.18541.883720.36013.1471
表4  不同碳黑含量PMMA的指前因子A
图4  不同碳黑含量的PMMA热降解模型验证,升温速率为5℃/min
1 Chen R Y, Xu M J. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermogravimetry and Fourier transform infrared analysis [J]. Waste Manage., 2020, 113: 51
doi: S0956-053X(20)30279-8 pmid: 32505975
2 Achilias D S. Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer [J]. Eur. Polym. J., 2007, 43(6): 2564
doi: 10.1016/j.eurpolymj.2007.02.044
3 Fateha T, Richard F, Rogaume T, et al. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air [J]. J. Anal. Appl. Pyrolysis, 2016, 120: 423
doi: 10.1016/j.jaap.2016.06.014
4 Poudel J, Lee Y M, Kim H J, et al. Methyl methacrylate (MMA) and alumina recovery from waste artificial marble powder pyrolysis [J]. J. Mater. Cycles Waste Manag., 2021, 23: 214
doi: 10.1007/s10163-020-01120-4
5 Phua J L, Teh P L, Ghani S A, et al. Comparison study of carbon black (CB) used as conductive filler in epoxy and polymethylmethacrylate (PMMA) [J]. J. Polym. Eng., 2016, 36(4): 391
doi: 10.1515/polyeng-2015-0026
6 Li J, Tong L F, Fang Z P, et al. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites [J]. Polym. Degrad. Stab., 2006, 91(9): 2046
doi: 10.1016/j.polymdegradstab.2006.02.001
7 Wang M, Li B, Wang J, et al. Preparation and properties of polysiloxane grafting multi-walled carbon nanotubes/polycarbonate nanocomposites [J]. Polym. Adv. Technol., 2010, 22(12): 1738
doi: 10.1002/pat.1665
8 Yamamoto T, Makino Y, Uematsu K. Improved mechanical properties of PMMA composites: dispersion, diffusion and surface adhesion of recycled carbon fiber fillers from CFRP with adsorbed particulate PMMA [J]. Adv. Powder Technol., 2017, 28(10): 2774
doi: 10.1016/j.apt.2017.08.003
9 Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes [J]. Adv. Mater., 2006, 18(6): 689
doi: 10.1002/adma.200501851
10 Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection [J]. Thermochim. Acta, 2017, 654: 191
doi: 10.1016/j.tca.2017.06.001
11 Paran S M R, Vahabi H, Jouyandeh M, et al. Thermal decomposition kinetics of dynamically vulcanized polyamide 6-acrylonitrile butadiene rubber-halloysite nanotube nanocomposites [J]. Appl. Polym., 2019, 136(20): 47483
12 Chen S H, Xu Y Y, Wang Z, et al. Pyrolysis kinetics of glass fiber/epoxy foam sandwich panel [J]. Chin. J. Mater. Res., 2019, 33(9): 699
doi: 10.11901/1005.3093.2019.192
12 陈松华, 徐艳英, 王 志 等. 玻璃纤维/环氧树脂泡沫夹层板的热降解动力学 [J]. 材料研究学报, 2019, 33(9): 699
doi: 10.11901/1005.3093.2019.192
13 Xu Y Y, Zhang Y, Wang Z, et al. Study on pyrolysis kinetics of typical carbon fiber bidirectional sheet [J]. Chin. J. Mater. Res., 2017, 31(1): 57
13 徐艳英, 张 颖, 王 志 等. 典型碳纤维编织布的热降解动力学 [J]. 材料研究学报, 2017, 31(1): 57
14 Friedman H L. Kinetics of thermal degradation of char-forming plastic from themogravimetry. Application to phenolic plastic [J]. J. Polym. Sci., Part C: Polym. Symp., 1963, 6: 183
15 Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from themogravimetric data [J]. J. Polym. Sci., Part B: Polym. Lett., 1966, 4(5): 323
doi: 10.1002/pol.1949.120040308
16 Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201(4914): 68
doi: 10.1038/201068a0
17 Bates P J, Khosravi S. Polymer degradation during contour laser transmission welding [A]. Annual Technical Conference-ANTEC [C]. Boston, 2011
18 Xu Y L, Chen B L. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis [J]. Bioresour. Technol., 2013, 146: 485
doi: 10.1016/j.biortech.2013.07.086
19 Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data [J]. Thermochim. Acta, 2011, 520(1-2): 1
doi: 10.1016/j.tca.2011.03.034
20 Li K Y, Pau D S, Zhang H P. Pyrolysis of polyurethane foam: optimized search for kinetic properties via simultaneous K-K method, genetic algorithm and elemental analysis [J]. Fire Mater., 2016, 40(6): 800
doi: 10.1002/fam.2343
21 Zabihi O, Ahmadi M, Shafei S, et al. One-step amino-functionalization of milled carbon fibre for enhancement of thermophysical properties of epoxy composites [J]. Composites Part A, 2016, 88: 243
doi: 10.1016/j.compositesa.2016.06.005
22 Yadav S K, Yoo H J, Cho J W. Click coupled graphene for fabrication of high-performance polymer nanocomposites [J]. J. Polym. Sci., Part B: Polym. Phys., 2013, 51: 39
23 Liang T, Yan C J, Zhou S, et al. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application [J]. J. Geophys. Eng., 2017, 14(5): 1225
doi: 10.1088/1742-2140/aa6e7e
24 Jakab E, Omastová M. Thermal decomposition of polyolefin/carbon black composites [J]. J. Anal. Appl. Pyrolysis, 2005, 74: 204
doi: 10.1016/j.jaap.2005.02.001
25 Omastová M, Podhradská S, Prokeš J, et al. Thermal ageing of conducting polymeric composites [J]. Polym. Degrad. Stabil., 2003, 82(2): 251
doi: 10.1016/S0141-3910(03)00218-0
26 Liu Y J, Su Z Z, Li X H, et al. Effect of dispersion of carbon black on electrical and thermal properties of poly(ethylene terephthalate)/carbon Black composites [J]. J. Macromol. Sci., Phys., 2009, 48: 146
27 Kausar A. Emerging trends in poly(methyl methacrylate) containing carbonaceous reinforcements-carbon nanotube, carbon black, and carbon fiber [J]. J. Plast. Film Sheeting, 2020, 36(4): 409
doi: 10.1177/8756087920917177
28 Ye L, Wu Q H, Qu B J. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites [J]. Polym. Degrad. Stabil., 2009, 94(5): 751
doi: 10.1016/j.polymdegradstab.2009.02.010
29 Roy N, Sengupta R, Bhowmick A K. Modifications of carbon for polymer composites and nanocomposites [J]. Prog. Polym. Sci., 2012, 37(6): 781
doi: 10.1016/j.progpolymsci.2012.02.002
30 Phua J L, Teh P L, Ghani S A, et al. Influence of thermoplastic spacer on the mechanical, electrical, and thermal properties of carbon black filled epoxy adhesives [J]. Polym. Adv. Technol., 2017, 28(3): 345
doi: 10.1002/pat.3894
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] 黄健, 林春香, 陈瑞英, 熊万永, 温小乐, 罗鑫. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9): 674-682.