Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 747-759    DOI: 10.11901/1005.3093.2021.521
  研究论文 本期目录 | 过刊浏览 |
蜘蛛大壶状腺丝的反复拉伸力学行为和性能
蒋平1(), 吴丽华2, 吕太勇3, José Pérez-Rigueiro4, 王安萍1
1.井冈山大学生命科学学院 生态环境与资源研究所 江西省生物多样性与生态工程重点实验室 吉安 343009
2.井冈山大学商学院 吉安 343009
3.西南医科大学附属医院核医学系 四川省核医学与分子影像重点实验室 泸州 646000
4.马德里理工大学材料科学系;生物医学与技术中心 马德里 28040 西班牙
Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk
JIANG Ping1(), WU Lihua2, LV Taiyong3, Pérez-Rigueiro José4, WANG Anping1
1.College of Life Sciences, Institute of Eco-environment and Resources, Key Laboratory for Biodiversity Science;and Ecological Engineering, Jinggangshan University, Ji'an 343009, China
2.Business College, Jinggangshan University, Ji'an 343009, China
3.Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Sichuan Key Laboratory of Nuclear Medicine and Molecular Imaging, Luzhou 646000, China
4.Departamento de Ciencia de Materiales, Centro de Tecnologı´a Biomédica, Universidad Politécnica de Madrid, Madrid 28040, Spain
引用本文:

蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
Ping JIANG, Lihua WU, Taiyong LV, José Pérez-Rigueiro, Anping WANG. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. Chinese Journal of Materials Research, 2022, 36(10): 747-759.

全文: PDF(9258 KB)   HTML
摘要: 

利用电子万能试验机与激光拉曼光谱仪对蜘蛛大壶状腺丝的反复拉伸力学行为及其拉伸后蛋白二级结构的变化进行测试研究。结果表明,大壶状腺丝具有优良的反复拉伸特性,且越拉越硬,但其屈服强度基本保持不变;前后两组分别定伸长间隔15~25 s和5 min拉过屈服点甚至拉伸至加强区的力学行为曲线均重叠良好;前后两组拉伸长时间(≥23 min)间隔后,只需一次拉伸就能不受拉伸历史的影响重现之前的力学行为,表现出类似橡胶的粘弹性力学行为特征;大壶状腺丝被反复拉伸时无规则卷曲之间的氢键断裂,停止拉伸卸载松弛后间隔时间的延长使部分结构恢复,同时形成β-转角或β-弯曲以及PGⅡ β-折叠的新结构,经多次反复拉伸后原有的β-折叠结构逐渐被破坏,断裂时被全部破坏。本研究结果对人们进行新型功能纤维材料的仿生设计具有重要的指导意义。

关键词 有机高分子材料蜘蛛大壶状腺丝反复拉伸特性蛋白二级结构力学行为记忆能力    
Abstract

In order to analyze and explore the changes of deformation, mechanical behavior and structure of spider major ampullate gland silk (abbr: Mas) during repetitive stretching and their relationship, the mechanical behavior of spider Mas and the changes of protein secondary structure after repetitive stretching were tested and investigated through the design of different combinations of loading elongation and the interval relaxation between the two stretching via electronic universal testing machine and laser Raman spectrometer. The results show that spider Mas presents excellent repetitive stretching characteristics with the gradual increase of the initial modulus but the a marginal variation in yield stress; When two groups of spider Mas fibers were stretched in the condition of gradual increase of the set stretching length and the set time intervals as 15~25 s and 5 min respectively, as a result, the acquired tensile curves of the two groups overlapped fairly well, even for the samples were stretched over the yield point, or even over the yield zone and into the strengthening zone as well; It reveals that in case the stretching test of the above two groups of samples has been interrupted for a long time interval of ≥23 min in between two stretching tests, the mechanical behavior of samples may be reproduced as soon as only one stretch again independent from the previous loading history. In other word, the above findings show that the mechanical behavior of spider Mas is similar to those of rubber's viscoelasticity. The results of Raman spectra showed that with the increase of the number of repetitive stretching and the set stretching length, the hydrogen bond between the random coils was broken. The interval after stretching seems to allow some structures to recover and contribute to the formation of the new β-turn or β-bend and PGⅡ β-sheet structure, After repetitive stretching for many times, the primitive β-sheet structure will be gradually destroyed, and almost all of it will be destroyed when Mas breaks. These findings may be helpful to guide the biomimetic design of novel fiber materials.

Key wordsorganic polymer materials    spider major ampullate gland silk    repetitive stretching    secondary structure of protein    tensile behavior memory capacity
收稿日期: 2021-09-09     
ZTFLH:  TS102.3  
基金资助:国家自然科学基金(31960197);国家自然科学基金(31160420);国家自然科学基金(30760041);江西省自然科学基金(20151BAB204019);江西省自然科学基金(20202BAB203024);江西省科技厅青年科学家培养对象项目(20133BCB23022);江西省教育厅科技重点项目(GJJ170626);江西省普通本科高校中青年教师发展计划访问学者专项基金(2016109)
作者简介: 蒋平,男,1975年生,博士
图1  横纹金蛛纺自大壶状腺的金黄色卵袋框丝扫描电镜照片
图2  典型性蜘蛛大壶状腺丝反复拉伸力学行为
图3  蜘蛛大壶状腺丝反复拉伸过程中典型的力学性能参数的变化
图4  蜘蛛大壶状腺丝反复拉伸次数与其拉伸前的几何参数
图5  蜘蛛大壶状腺丝定伸长长度增加前后力学行为的比较
图6  蜘蛛大壶状腺丝连续拉伸即很短时间间隔前后力学行为的比较
图7  蜘蛛大壶状腺丝力学行为记忆能力
图8  蜘蛛大壶状腺丝间隔不同时间梯度力学行为的比较
图9  蜘蛛大壶状腺丝定伸长反复拉伸力学行为(用于激光拉曼光谱测试分析)
图10  蜘蛛大壶状腺丝经不同次数的反复拉伸以及每次拉伸之间不同间隔时间后的激光拉曼光谱(Mas-9th-5 min表示大壶状腺丝被反复拉伸第9次卸载后5 min做的拉曼光谱,其余以此类推)
Control9th- 5 min9th- 2 h9th- 20 h14th- 15 min23rd- 5 min27th- 5 min34th- 5 minAssignment[30, 31]
169316971697-1697169716941697*Amide Ⅰ, C=O in antiparallel β-sheet
1678--16711669167216691669Amide Ⅰ, C=O in β-sheet or random coil
-1655*1655-1651---Amide Ⅰ, α-helix or random coil poly(E)

1636

1615

-

1636

1615

1593

1636

1613

1593

1636

1613

-

1637

1611

1595

1636

1615

1597*

1636

1615

1594

1633

1610

1594

Amide Ⅰ, β-sheet aromatic ring s in F and Y
15601558156715671555/1545156715671562Amide Ⅱ, C-N α-helix or random coil
15231523152315231523152315231522Amide Ⅱ, β-sheet
14491449144914431452144514451445Poly(A) CH3 ab, poly(AG) CH2 b
-1440--1442---COO- ss in D and E

1386

1362

1386

1362

1390

1362

1386

1362

1385

1362

1386

1361

1386

1361

1381

1360

Amide Ш, Ha b, N-H ib
13351335132813241325132513251318Amide Ш, CH3 sb, Ha b
12771277127712771277127712771276Amide III: N-H ib, C=O ib, C-C s
12431237-1227122412191220Amide Ш, N-H ib, CH2 tw
-1186--1186---Amide Ш, aromatic ring C-H ib
---11471147---H a b
1117112311231123112311231123-C-C β s
10961096109610961096109510951095C-C β s
10451045104510451046104510451039C-C β s
-100210031003100410021002997Aromatic ring br in F and Y

968

924

904

951

924

904

962

924

904

962

924

904

947

926

904

947

918*

906

948

926*

906

946

-

-

Poly-alanine CH3r, N-C α s, C-C s, C=O s
表1  蜘蛛大壶状丝拉曼光谱在反复拉伸过程中特征谱带及其波谱数的变化
Geometric parameterStatistical hypothesis testTensile behavior curve
Repeatability (good)Repeatability (bad)
Initial length (L0)Unchanged (P>0.05)Structures unchangedStructures change
Changed (P<0.05)Structures precise changeStructures change
表2  蜘蛛大壶状腺丝的形变、力学行为与蛋白二级结构之间的关系
图11  蜘蛛大壶状腺丝拉伸过程中蛋白二级结构的变化模型图
1 Vienneau-Hathaway J M, Brassfield E R, Lane A K, et al. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders [J]. BMC Evolutionary Biology, 2017, 17: 78
doi: 10.1186/s12862-017-0927-x pmid: 28288560
2 Garwood R J, Dunlop J A, Selden P A, et al. Almost a spider: a 305-million-year-old fossil arachnid and spider origins [J]. Proceedings of the Royal Society B Biological Science, 2016, 283: 1827
3 Madurga R, Plaza G R, Blackledge T A, et al. Material properties of evolutionary diverse spider silks described by variation in a single structural Parameter [J]. Scientific Reports, 2016, 6: 18991
doi: 10.1038/srep18991 pmid: 26755434
4 Blackledge T A, Pérez-Rigueiro J, Plaza G R, et al. Sequential origin in the high performance properties of orb spider dragline silk [J]. Scientific Reports, 2012, 2: 782
doi: 10.1038/srep00782 pmid: 23110251
5 Swanson B O, Blackledge T A, Hayashi C Y, et al. Spider dragline silk: correlated and mosaic evolution in high-performance biological materials [J]. Evolution, 2006, 60(12): 2539
pmid: 17263115
6 Gosline J M, Demont M E, Denny M W. The strucure and properties of spider silk [J]. Endeavor, 1986, 10(1): 37
doi: 10.1016/0160-9327(86)90049-9
7 Vollrath F. Strength and structure of spider' silks [J]. Biological Macromolecules, 2000, 74 (2): 67
8 Jiang P, Wu L H, Xiao Y H, et al. Composition, structure and biological function of spider silk [J]. Chinese Journal of Zoology, 2014, 49(5): 778
8 蒋 平, 吴丽华, 肖永红 等. 蜘蛛丝的组成结构与生物学功能 [J]. 动物学杂志, 2014, 49(5): 778
9 Blamires S J, Nobbs M, Martens P J, et al. Multiscale mechanisms of nutritionally induced property variation in spider silks [J]. PLoS One, 2018, 13(2): 1
10 Blamires S J, Blackledge T A, I-Min Tso. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production [J]. Annual Review of Entomology, 2017, 62: 443
doi: 10.1146/annurev-ento-031616-035615 pmid: 27959639
11 Madsen B, Shao Z Z, Vollrath F, et al. variability in the mechanical properties of spider silks on three leveles: interspecific, intraspecific and intraindividual [J]. International Journal of Biological Macromolecules, 1999, 24(2-3): 301
pmid: 10342779
12 Osaki S, Yamamoto K, Matsuhira T, et al. The effects of seasonal changes on the molecular weight of Nephila clavata spider silk [J]. Polymer Journal Advance Online Publication, 2016: 1
13 Elices M, Guinea G V, Pérez-Rigueiro J, et al. Finding inspiration in argiope trifasciata spider silk fibers [J]. Journal of the Minerals Metals, Materials Society, 2005, 57(2): 60
14 Fang G Q, Huang Y F, Tang Yu Z, et al. Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers [J]. ACS Biomater. Sci. Eng., 2016, 2: 1992
doi: 10.1021/acsbiomaterials.6b00392
15 Peng P, Du Y, Zheng J. Reconfigurable bioinspired framework nucleic acid nanoplatform dynamically manipulated in living cells for subcellular imaging [J]. Angewandte Chemie International Edition, 2019, 58(6) : 1648
doi: 10.1002/anie.201811117
16 Zhang X, Liu W F, Yang D J, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent uv-blocking performance [J]. Advanced Functional Materials, 2019, 29(4): 1
17 Vollrath F, Porter D, Holland C. The science of silks [J]. MRS Bulletin, 2013, 38(1): 73
doi: 10.1557/mrs.2012.314
18 Shao Z Z, Vollrath F, Sirichaisit J, et al. Analysis of spider silk in native and supercontracted states using Raman spectroscopy [J]. Polymer, 1999, 40: 2493
doi: 10.1016/S0032-3861(98)00475-3
19 Jiang P, Wu L H, Liao X J, et al. Relationship of Tensile behaviors and biological function of silk fibers from egg case of argiope bruennichi [J]. Sichuan Journal of Zoology, 2018, 37(5): 556
19 蒋 平, 吴丽华, 廖信军 等. 横纹金蛛卵袋丝的力学行为与生物学功能之间的关系 [J]. 四川动物, 2018, 37(5): 556
20 Elices M, Pérez-Rigueiro J, Plaza G R, et al. Recovery in spider silk fibers [J]. Journal of Applied Polymer Science, 2004, 92: 3537
doi: 10.1002/app.20383
21 Guinea G V, Cerdeira M, Plaza G R, et al. Recovery in Viscid Line Fibers [J]. Biomacromolecules 2010, 11: 1174
22 Jiang P, Lv T Y, Xiao Y H, et al. Morphologies and tensile behaviors of three types of spider silks with different functions [J]. Journal of Materials Science & Engineering, 2011, 29(5): 734
22 蒋 平, 吕太勇, 肖永红 等. 三种不同功能蛛丝的超微结构与拉伸力学行为 [J]. 材料科学与工程学报, 2011, 29(5): 734
23 Jiang P, Lv T Y, Xiao Y H, et al. Physico-chemical structural characterizations and mechanical properties of egg case silk from the two spiders: Argiope Amoena and Nephila Clavata [J]. Acta Biophysica Sinica, 2010, 26(2): 149
23 蒋 平, 吕太勇, 肖永红 等. 悦目金蛛和棒络新妇卵袋丝物理化学结构表征及其力学性能 [J]. 生物物理学报, 2010, 26(2): 149
24 Jiang P, Lv T Y, Xiao Y H, et al. Amino acid profiles and tensile behaviors of egg case silk of spider Nephila clavata [J]. Journal of Textile Research, 2010, 31(5): 1
doi: 10.1177/004051756103100101
24 蒋 平, 肖永红, 廖信军 等. 棒络新妇卵袋丝氨基酸组成及其力学行为 [J]. 纺织学报, 2010, 31(5): 1
25 Jiang P, Marí-Buyé N, Guinea G V, et al. Spider silk gut: development and characterization of a novel strong spider silk fiber [J]. Sci. Rep., 2014, 4: 7326
doi: 10.1038/srep07326 pmid: 25475975
26 Jiang P, Ruiz V, Müller C, et al. Preparation and characterization of Nephila clavipes tubuliform silk gut [J]. Soft Matter, 2019, 15, 2960
doi: 10.1039/C9SM00212J
27 Jiang P, Liu H F, Wang C H, et al. Tensile behavior and morphology of differently degummed Silkworm cocoon silk fibres [J]. Materials Letters, 2006, 60: 919
doi: 10.1016/j.matlet.2005.10.056
28 Guinea G V, Pérez-Rigueiro J, Plaza G R, et al. Volume constancy during stretching of spider silk [J]. Biomacromolecules, 2006, (7): 2173
pmid: 16827584
29 Guinea G V, Elices M, Pérez-Rigueiro J, et al. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk [J]. J. Exp. Biol, 2005, 208: 25
doi: 10.1242/jeb.01344
30 Rousseau M E, Lefévre T, Pézolet M, et al. Study of protein conformation and orientation in silkworm and spider silk fibers using raman microspectroscopy [J]. Biomacromolecules, 2004, 5: 2247
doi: 10.1021/bm049717v
31 Benevides J M, Overman S A, Thomas G J. Raman spectroscopy of proteins [J]. Current Protocols in Protein Science, 2003, 17(8): 1
32 Chen L H, Song Y H, Yue S J, et al. Analysis of fatigue test parameters of nylon warp knitted fabric [J]. Journal of Knitting Industry, 2007, 6: 62
32 陈丽华, 宋玉惠, 岳淑杰 等. 氯纶经编针织物疲劳性试验参数的分析 [J]. 针织工业, 2007, 6: 62
33 Dai J F, Zhang C, Wang Q, et al. Preparation and characterization of polymethylmetharylate/aligned SWCNT composites with by repeated stretching [J]. New Carbon Materials, 2008, 23(3): 201
33 戴剑锋, 张 超, 王 青 等. 反复拉伸法制备单壁碳纳米管定向排列的SWCNT/PMMA复合材料 [J]. 新型炭材料, 2008, 23(3): 201
34 He W B, Jin M, Zhao Y L. Mechanic behaviors of the thermoviscoelastic matrix composites with shape memory fiber [J]. Chinese Journal of Materials Research, 2009, 23(1): 17
34 贺微波, 金 明, 赵永利. 形状记忆纤维热粘弹性基体复合材料的力学行为 [J]. 材料研究学报, 2009, 23(1): 17
35 Emile O, Floch A L, Vollrath F. Shape memory in spider dragline [J]. Nature: Brief Communication, 2006, 440(30): 621
36 Na H D. Mechanical behavior and stretching crystallization of rubber [J]. World Rubber Industry, 2009, 36(3): 20
36 那洪栋. 橡胶的力学行为和拉伸结晶化 [J]. 世界橡胶工业, 2009, 36(3): 20
37 Fukushima Y. Secondary structural analysis in the solid state for analogous sequential polypeptides of glycine-rich sequence of spider dragline silk [J]. Polymer Bulletin, 2000, 45: 237
doi: 10.1007/s002890070026
38 Zhou W, Chen X, Shao Z Z. Conformation studies of silk proteins with infrared and raman spectroscopy [J]. Progress in Chemistry, 2006, 18(11): 1514
38 周 文, 陈 新, 邵正中. 红外和拉曼光谱用于对丝蛋白构象的研究 [J]. 化学进展, 2006, 18(11): 1514
39 Sirichaisit J, Young R J, Vollrath F. Molecular deformation in spider dragline silk subjected to stress [J]. Polymer, 2000, 41: 1223
doi: 10.1016/S0032-3861(99)00293-1
40 Casem M L, Turner D, Houchin K. Protein and amino acid composition of silks from the cob weaver, Latrodectus Hesperus (black widow) [J]. International Journal of Biological Macromolecules, 1999, 24: 103
pmid: 10342753
41 Dicko C, Vollrath F, Kenney J M. Spider silk protein refolding is controlled by changing pH [J]. Biomacromolecules, 2004, (5): 704
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] 黄健, 林春香, 陈瑞英, 熊万永, 温小乐, 罗鑫. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9): 674-682.