Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 257-263    DOI: 10.11901/1005.3093.2021.612
  研究论文 本期目录 | 过刊浏览 |
兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯
叶姣凤1, 王飞1, 左洋1, 张钧翔1, 罗晓晓2, 冯利邦1()
1.兰州交通大学材料科学与工程学院 兰州 730070
2.华南理工大学亚热带建筑科学国家重点实验室 广州 510641
Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance
YE Jiaofeng1, WANG Fei1, ZUO Yang1, ZHANG Junxiang1, LUO Xiaoxiao2, FENG Libang1()
1.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2.State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China
引用本文:

叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
Jiaofeng YE, Fei WANG, Yang ZUO, Junxiang ZHANG, Xiaoxiao LUO, Libang FENG. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. Chinese Journal of Materials Research, 2023, 37(4): 257-263.

全文: PDF(3899 KB)   HTML
摘要: 

将E51环氧树脂引入基于Diels-Alder反应的热可逆聚氨酯,制备出环氧树脂改性热可逆自修复聚氨酯材料。引入环氧树脂,可提高改性热可逆聚氨酯的拉伸强度、杨氏模量、冲击韧性和邵氏硬度且保持较高的断裂伸长率。添加20%的环氧树脂制备的环氧树脂改性热可逆聚氨酯材料兼具优异的强度、韧性、硬度等力学性能和良好自修复性能。当环氧树脂改性热可逆聚氨酯出现裂纹裂缝等损伤后,在130℃处理20 min及60℃处理24 h便可修复损伤,并可实现同一部位多次损伤的重复自修复。力学性能提高的原因,是刚性环氧树脂相与聚氨酯弹性相相互缠结形成互穿聚合物网络结构产生的“强迫互溶”和“协同效应”;而多次重复自修复则归因于热可逆Diels-Alder反应和分子链热运动的协同作用。

关键词 有机高分子材料自修复Diels-Alder反应聚氨酯环氧树脂力学性能    
Abstract

An epoxy resin modified thermo-reversible polyurethane with self-healing ability was manufactured successfully by introducing E51 epoxy resin into Diels-Alder reaction-based thermo-reversible polyurethane. The tensile strength, Young's modulus, impact toughness and Shore hardness of the thermo-reversible polyurethane were significantly enhanced, while the elongation at break of which was remained at a relatively high level after epoxy resin was introduced. The 20% epoxy resin-modified thermo-reversible polyurethane material presents high mechanical properties such as strength, toughness and hardness, as well as excellent self-healing characteristic. If damages such as cracks and crevices have been accidently emerged on the epoxy resin modified thermal reversible polyurethane, such damaged spots can be recovered through a post heat treatment by either 130℃×20 min or 60℃×24 h. Moreover, such repair may be allowed to repeat several times for the same location after being subjected to repeatedly damages. It is believed that the enhancement of mechanical performance of the epoxy resin modified thermal reversible polyurethane may be ascribed to the so called "forced mutual dissolution" and "synergistic effect", resulted from the interpenetrating polymer network structure formed through entanglement of the rigid phase of epoxy and the elastic polyurethane phase of polyurethane. Meanwhile, the repeatable self-healing of the epoxy resin modified thermal reversible polyurethane may be due to the synergistic effect of the thermo-reversible Diels-Alder reaction and the thermal movement of molecular chains.

Key wordsorganic polymer materials    self-healing    Diels-Alder reaction    polyurethane    epoxy resin    mechanical properties
收稿日期: 2021-10-29     
ZTFLH:  TQ323  
基金资助:国家自然科学基金(51463010)
作者简介: 叶姣凤,女,1986年生,博士
图1  MPF、E51和EP-DA-E51的红外光谱
图2  E51添加量不同的PU-DA-E51的应力-应变曲线以及E51添加量对PU-DA-E51拉伸强度、冲击韧性和邵氏硬度的影响
图3  PU-DA-E51分别在120℃、130℃和140℃裂缝的愈合过程和PU-DA-E51在60℃处理不同时间后的DSC曲线
图4  经多次损伤-热处理的PU-DA-E51的应力-应变曲线
图5  PU-DA-E51力学性能增强的原理和自修复机理示意图
1 He X, Wang F, Zhao H W, et al. Preparation and healing behavior of self-healing epoxy resins based on Diels-Alder reaction[J]. Chin. J. Mater. Res. 2019, 33(8): 635
1 何 霞, 王 飞, 赵翰文 等. 基于Diels-Alder反应的自修复环氧树脂的制备和修复行为[J]. 材料研究学报, 2019, 33(8): 635
2 Wang X H, Zhan S N, Lu Z Y, et al. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance[J]. Adv. Mater., 2020, 32: 2005759
doi: 10.1002/adma.v32.50
3 Wang Y D, Zheng Y P, Song S, et al. Effect of particle size and content of SiO2 solvent-free nanofluid on mechanical and thermal properties of epoxy resin[J]. J. Mater. Eng., 2021, 49(10): 156
3 王钰登, 郑亚萍, 宋 珊 等. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156
4 Ji Y R, Xiong X H, Chen P, et al. Synthesis and properties of phthalocyanine and cyano-containing epoxy resin[J]. Chin. J. Mater. Res., 2017, 31(12): 925
4 冀阳冉, 熊需海, 陈 平 等. 含酞cardo环和氰基环氧树脂的制备和性能[J]. 材料研究学报, 2017, 31(12): 925
5 Rosu D, Rosu L, Mustata F, et al. Effect of UV radiation on some semi-interpenetrating polymer networks based on polyurethane and epoxy resin[J]. Polym. Degrad. Stab., 2012, 97: 1261
doi: 10.1016/j.polymdegradstab.2012.05.035
6 Hsieh K H, Han J L, Yu C T, et al. Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): mechanical behavior and morphology[J]. Polymer, 2001, 42: 2491
doi: 10.1016/S0032-3861(00)00641-8
7 Wu P, Liu L, Wu Z J. Synthesis of Diels-Alder reaction-based remendable epoxy matrix and corresponding self-healing efficiency to fibrous composites[J]. Macromol. Mater. Eng., 2020, 2000359
8 Zhang Y P, Ye J F, Qu D A, et al. Thermo-adjusted self-healing epoxy resins based on Diels-Alder dynamic chemical reaction[J]. Polym. Eng. Sci., 2021, 61: 2257
doi: 10.1002/pen.v61.9
9 Feng L B, Zhao H W, H X, et al. Synthesis and self-healing behavior of thermo-reversible epoxy resins modified with nitrile butadiene rubber[J]. Polym. Eng. Sci., 2019, 59(8): 1603
doi: 10.1002/pen.v59.8
10 Chen X X, Wudl F, Mal A K, et al. A thermally remendable cross-linked polymeric material[J]. Science, 2002, 295(5560): 1698
doi: 10.1126/science.1065879
11 Yu Z Y, Feng L B, Chai C S, et al. Structure and healing behavior of self-healing polyurethane based on Diels-Alder reaction[J]. Acta. Polym. Sin., 2016, 11: 1579
11 于正洋, 冯利邦, 柴昌盛 等. 基于 Diels-Alder反应的自修复聚氨酯的结构与修复行为[J]. 高分子学报, 2016, 11: 1579
12 Liu Y L, Chuo T W. Self-healing polymers based on thermally reversible Diels-Alder chemistry[J]. Polym. Chem., 2013, 4: 2194
doi: 10.1039/c2py20957h
13 Czifrák K, Lakatos C, Karger-Kocsis J, et al. One-pot synthesis and characterization of novel shape-memory poly(ε-caprolactone) based polyurethane-epoxy co-networks with Diels-Alder couplings[J]. Polymers, 2018, 10: 504
doi: 10.3390/polym10050504
14 Feng L B, Yu Z Y, Bian Y H, et al. Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains[J]. Polymer, 2017, 124: 48
doi: 10.1016/j.polymer.2017.07.049
15 Feng L B, Yu Z Y, Bian Y H, et al. Effect of failure modes on healing behavior and multiple healing capability of self-healing polyurethanes[J]. Constr. Build. Mater., 2018, 186: 1212
doi: 10.1016/j.conbuildmat.2018.08.048
16 Feng L B, Bian Y H, Chai C S, et al. Effect of heat-treatment on self-healing and processing behavior of thermally reversible polyurethanes[J]. J. Polym. Environ., 2020, 28: 647
doi: 10.1007/s10924-019-01633-6
17 Wu M Y, Du P F, Zheng Z, et al. Synthesis and performance of hot melt polyurethane adhesives based on Diels-Alder reaction[J]. Polym. Mater. Sci. Eng., 2015, 31(11): 1
17 伍梅银, 杜鹏飞, 郑 震 等. 基于热可逆Diels-Alder反应的聚氨酯热熔胶的合成与性能[J]. 高分子材料科学与工程, 2015, 31(11): 1
18 Zhang S Y, Bai Y P, Zhao K F, et al. Synthesis and reprocessing of self-healing crosslinked polyurethane containing Diels-Alder bonds[J]. J. Chem. Eng. Chin. Univ., 2018, 32(2): 435
18 张士玉, 白亚朋, 赵凯锋 等. 含DA键的自修复交联型聚氨酯弹性体的制备与再加工[J]. 高校化学工程学报, 2018, 32(2): 435
19 Hu J, Mo R B, Sheng X X, et al. A self-healing polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds[J]. Polym. Chem., 2020, 11: 2585
doi: 10.1039/D0PY00151A
20 Liu Y L, Hsieh C Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds[J]. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 905
doi: 10.1002/(ISSN)1099-0518
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.