|
|
原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能 |
余圣1, 郭威1,2,3( ), 吕书林1, 吴树森1 |
1.华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074 2.深圳华中科技大学研究院 深圳 518057 3.西安交通大学 金属材料强度国家重点实验室 西安 710049 |
|
Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase |
YU Sheng1, GUO Wei1,2,3( ), LV Shulin1, WU Shusen1 |
1.State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China 3.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
Sheng YU,
Wei GUO,
Shulin LV,
Shusen WU.
Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. Chinese Journal of Materials Research, 2024, 38(2): 105-110.
1 |
Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29(9): 1953
|
1 |
翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望 [J]. 中国有色金属学报, 2019, 29(9): 1953
|
2 |
Qiu K Q, Yang J B, You J H, et al. Glass-forming ability and mechanical properties for Mg-Zn-Ca alloys [J]. Chin. J. Nonferrous Met., 2011, 21(8): 1828
|
2 |
邱克强, 杨君宝, 尤俊华 等. Mg-Zn-Ca合金的非晶形成能力及力学性能 [J]. 中国有色金属学报, 2011, 21(8): 1828
|
3 |
Li B Y, Rong L J, Li Y Y. Stress-strain behavior of porous Ni-Ti shape memory intermetallics synthesized from powder sintering [J]. Intermetallics, 2000, 8(5-6): 643
doi: 10.1016/S0966-9795(99)00140-5
|
4 |
Xie G Q, Kanetaka H, Kato H, et al. Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility [J]. Intermetallics, 2019, 105: 153
doi: 10.1016/j.intermet.2018.12.002
|
5 |
He G, Eckert J, Löser W. Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites [J]. Acta Mater., 2003, 51(6): 1621
doi: 10.1016/S1359-6454(02)00563-3
|
6 |
Sugiyama N, Xu H Y, Onoki T, et al. Bioactive titanate nanomesh layer on the Ti-based bulk metallic glass by hydrothermal-electrochemical technique [J]. Acta Biomater., 2009, 5(4): 1367
doi: 10.1016/j.actbio.2008.10.014
pmid: 19022712
|
7 |
Li J, Li Z C, Chen D J. Biocompatibility of new titanium alloy TZNT for surgical implant application [J]. Chin. J. Nonferrous Met., 2010, 20(4): 756
|
7 |
李 军, 李佐臣, 陈杜娟. 新型外科植入用钛合金TZNT的生物相容性 [J]. 中国有色金属学报, 2010, 20(4): 756
|
8 |
Zhu S L, Wang X M, Qin F X, et al. New TiZrCuPd quaternary bulk glassy alloys with potential of biomedical applications [J]. Mater. Trans., 2007, 48(9): 2445
doi: 10.2320/matertrans.MRA2007086
|
9 |
Xu F, Long Z L, Peng J, et al. Atomic force microscope nanoindentation behavior of shear bands of bulk metallic glasses [J]. Chin. J. Nonferrous Met., 2011, 21(6): 1444
|
9 |
许 福, 龙志林, 彭 建 等. 块体非晶合金剪切带的原子力纳米压痕行为 [J]. 中国有色金属学报, 2011, 21(6): 1444
|
10 |
Gu X J, Poon S J, Shiflet G J, et al. Compressive plasticity and toughness of a Ti-based bulk metallic glass [J]. Acta Mater., 2010, 58(5): 1708
doi: 10.1016/j.actamat.2009.11.013
|
11 |
Wada T, Setyawan A D, Yubuta K, et al. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt [J]. Scr. Mater., 2011, 65(6): 532
doi: 10.1016/j.scriptamat.2011.06.019
|
12 |
Kolodziejska J A, Kozachkov H, Kranjc K, et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites [J]. Sci. Rep., 2016, 6(1): 22563
doi: 10.1038/srep22563
|
13 |
Zhai H M, Wang H F, Liu F. Effects of Sn addition on mechanical properties of Ti-based bulk metallic glass composites [J]. Mater. Des., 2016, 110: 782
doi: 10.1016/j.matdes.2016.08.051
|
14 |
Zhang L, Zhang H F, Li W Q, et al. β-type Ti-based bulk metallic glass composites with tailored structural metastability [J]. J. Alloys Compd., 2017, 708: 972
doi: 10.1016/j.jallcom.2017.03.074
|
15 |
Zhao J X. Understanding the shear band interaction in metallic glass [J]. Philos. Mag. Lett., 2016, 96(1): 35
doi: 10.1080/09500839.2015.1134834
|
16 |
Qiao J W, Zhang Y, Liaw P K, et al. Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite [J]. Scr. Mater., 2009, 61(11): 1087
doi: 10.1016/j.scriptamat.2009.08.044
|
17 |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48(1): 279
doi: 10.1016/S1359-6454(99)00300-6
|
18 |
Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
doi: 10.1016/j.pmatsci.2015.05.002
|
19 |
Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94(12): 125510
doi: 10.1103/PhysRevLett.94.125510
|
20 |
Wang Z, Georgarakis K, Nakayama K S, et al. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites [J]. Sci. Rep., 2016, 6(1): 24384
doi: 10.1038/srep24384
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|