Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 105-110    DOI: 10.11901/1005.3093.2023.227
  研究论文 本期目录 | 过刊浏览 |
原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能
余圣1, 郭威1,2,3(), 吕书林1, 吴树森1
1.华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074
2.深圳华中科技大学研究院 深圳 518057
3.西安交通大学 金属材料强度国家重点实验室 西安 710049
Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase
YU Sheng1, GUO Wei1,2,3(), LV Shulin1, WU Shusen1
1.State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
3.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
Sheng YU, Wei GUO, Shulin LV, Shusen WU. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. Chinese Journal of Materials Research, 2024, 38(2): 105-110.

全文: PDF(8637 KB)   HTML
摘要: 

在Ti40Zr10Cu36Pd14非晶合金基体中微添加β-Ti相稳定化元素Mo,使体系在凝固过程中原位析出塑性β-Ti相,制备出原位自生β-Ti相增强Ti基非晶复合材料。在这种复合材料的变形过程中塑性β-Ti相阻碍基体中主剪切带的扩展,使其发生偏转和增殖生成多重剪切带,使其室温力学性能显著提高。其中(Ti0.4Zr0.1Cu0.36Pd0.14)95Mo5试样的室温强度达到2630 MPa,塑性应变达到7.3%,比基体分别提高了32.0%和508%。

关键词 金属材料非晶复合材料室温塑性剪切带    
Abstract

Ti-based amorphous alloys possess excellent properties such as low density, good biocompatibility and high corrosion resistance, which makes them one kind of promising materials used as biomedical materials. However, the room-temperature brittleness of Ti-based amorphous alloys limits their application. In order to improve the room-temperature plasticity of Ti-based amorphous alloys, the present study, a small amount of Mo (a β-Ti stabilizing element) is added to the Ti40Zr10Cu36Pd14 amorphous alloy so that the plastic β-Ti phase particles may be precipitated in-situ within the alloy during the solidification process. It is expected that in the subsequent deformation process, the plastic β-Ti phase can effectively impede the rapid propagation of the main shear band in the matrix, causing deflects, branching or multiplication of it. The multiple shear bands significantly improved the room-temperature mechanical properties. Finally, the optimal room-temperature mechanical properties were obtained for the amorphous alloy (Ti0.4Zr0.1Cu0.36Pd0.14)95Mo5 which showed the fracture strength of 2630 MPa and plastic strain of 7.3%, namely 32.0% and 508% higher than that of the base alloy, respectively.

Key wordsmetallic materials    amorphous alloy matrix composites    room-temperature plasticity    shear band
收稿日期: 2023-04-18     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(52101138);深圳市科技计划(JCYJ20220530160813032);新金属材料国家重点实验室开放基金(2020-Z01);金属材料强度国家重点实验室开放基金(20202205);广东省基础与应用基础研究基金(2020A1515110531)
通讯作者: 郭威,副研究员,weiguo@hust.edu.cn,研究方向为非晶复合材料组织及性能优化
Corresponding author: GUO Weil, Tel: 18627710273, E-mail: weiguo@hust.edu.cn
作者简介: 余 圣,男,1998年生,硕士
图1  Ti基非晶复合材料的XRD谱
图2  不同Mo含量样品的SEM照片和Mo元素的分布
图3  Mo5试样的SEM照片对应的元素面扫图
图4  不同Mo含量试样的室温压缩真应力-应变曲线
SampleE / GPaσf / MPaσy / MPaεf / %εp / %n
Mo0122199218502.71.2-
Mo1128205719123.21.7-
Mo2113242218185.53.90.14
Mo5105263017729.07.30.20
表1  不同Mo含量的Ti基非晶复合材料的杨氏模量E、断裂强度σf、屈服强度σy、断裂应变εf、屈服应变εp和加工硬化指数n
图5  不同Mo含量Ti基非晶复合材料的压缩断口及其侧面SEM图像
1 Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29(9): 1953
1 翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望 [J]. 中国有色金属学报, 2019, 29(9): 1953
2 Qiu K Q, Yang J B, You J H, et al. Glass-forming ability and mechanical properties for Mg-Zn-Ca alloys [J]. Chin. J. Nonferrous Met., 2011, 21(8): 1828
2 邱克强, 杨君宝, 尤俊华 等. Mg-Zn-Ca合金的非晶形成能力及力学性能 [J]. 中国有色金属学报, 2011, 21(8): 1828
3 Li B Y, Rong L J, Li Y Y. Stress-strain behavior of porous Ni-Ti shape memory intermetallics synthesized from powder sintering [J]. Intermetallics, 2000, 8(5-6): 643
doi: 10.1016/S0966-9795(99)00140-5
4 Xie G Q, Kanetaka H, Kato H, et al. Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility [J]. Intermetallics, 2019, 105: 153
doi: 10.1016/j.intermet.2018.12.002
5 He G, Eckert J, Löser W. Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites [J]. Acta Mater., 2003, 51(6): 1621
doi: 10.1016/S1359-6454(02)00563-3
6 Sugiyama N, Xu H Y, Onoki T, et al. Bioactive titanate nanomesh layer on the Ti-based bulk metallic glass by hydrothermal-electrochemical technique [J]. Acta Biomater., 2009, 5(4): 1367
doi: 10.1016/j.actbio.2008.10.014 pmid: 19022712
7 Li J, Li Z C, Chen D J. Biocompatibility of new titanium alloy TZNT for surgical implant application [J]. Chin. J. Nonferrous Met., 2010, 20(4): 756
7 李 军, 李佐臣, 陈杜娟. 新型外科植入用钛合金TZNT的生物相容性 [J]. 中国有色金属学报, 2010, 20(4): 756
8 Zhu S L, Wang X M, Qin F X, et al. New TiZrCuPd quaternary bulk glassy alloys with potential of biomedical applications [J]. Mater. Trans., 2007, 48(9): 2445
doi: 10.2320/matertrans.MRA2007086
9 Xu F, Long Z L, Peng J, et al. Atomic force microscope nanoindentation behavior of shear bands of bulk metallic glasses [J]. Chin. J. Nonferrous Met., 2011, 21(6): 1444
9 许 福, 龙志林, 彭 建 等. 块体非晶合金剪切带的原子力纳米压痕行为 [J]. 中国有色金属学报, 2011, 21(6): 1444
10 Gu X J, Poon S J, Shiflet G J, et al. Compressive plasticity and toughness of a Ti-based bulk metallic glass [J]. Acta Mater., 2010, 58(5): 1708
doi: 10.1016/j.actamat.2009.11.013
11 Wada T, Setyawan A D, Yubuta K, et al. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt [J]. Scr. Mater., 2011, 65(6): 532
doi: 10.1016/j.scriptamat.2011.06.019
12 Kolodziejska J A, Kozachkov H, Kranjc K, et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites [J]. Sci. Rep., 2016, 6(1): 22563
doi: 10.1038/srep22563
13 Zhai H M, Wang H F, Liu F. Effects of Sn addition on mechanical properties of Ti-based bulk metallic glass composites [J]. Mater. Des., 2016, 110: 782
doi: 10.1016/j.matdes.2016.08.051
14 Zhang L, Zhang H F, Li W Q, et al. β-type Ti-based bulk metallic glass composites with tailored structural metastability [J]. J. Alloys Compd., 2017, 708: 972
doi: 10.1016/j.jallcom.2017.03.074
15 Zhao J X. Understanding the shear band interaction in metallic glass [J]. Philos. Mag. Lett., 2016, 96(1): 35
doi: 10.1080/09500839.2015.1134834
16 Qiao J W, Zhang Y, Liaw P K, et al. Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite [J]. Scr. Mater., 2009, 61(11): 1087
doi: 10.1016/j.scriptamat.2009.08.044
17 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48(1): 279
doi: 10.1016/S1359-6454(99)00300-6
18 Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
doi: 10.1016/j.pmatsci.2015.05.002
19 Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94(12): 125510
doi: 10.1103/PhysRevLett.94.125510
20 Wang Z, Georgarakis K, Nakayama K S, et al. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites [J]. Sci. Rep., 2016, 6(1): 24384
doi: 10.1038/srep24384
[1] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[4] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[5] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[6] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.