Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 517-525    DOI: 10.11901/1005.3093.2020.579
  研究论文 本期目录 | 过刊浏览 |
中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能
阙爱珍, 朱桃玉, 郑玉婴()
福州大学材料科学与工程学院 福州 350108
Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue
QUE Aizhen, ZHU Taoyu, ZHENG Yuying()
Department of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
引用本文:

阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能[J]. 材料研究学报, 2021, 35(7): 517-525.
Aizhen QUE, Taoyu ZHU, Yuying ZHENG. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue[J]. Chinese Journal of Materials Research, 2021, 35(7): 517-525.

全文: PDF(7636 KB)   HTML
摘要: 

用共沉淀法将Fe3O4沉淀在PS微球上并用甲苯去除PS制备出Fe3O4@PS,再用超声将用Hummers法制备的氧化石墨烯包裹在Fe3O4@PS表面制备出中空磁性氧化石墨烯,研究了这种复合材料对模拟亚甲基蓝废水的吸附。结果表明:在55℃,用中空磁性氧化石墨烯对亚甲基蓝染料吸附60 min达到平衡,最大吸附量为349.85 mg·g-1。吸附剂循环8次,吸附效率仍高于80%。用准二级动力学模型可很好地拟合中空磁性氧化石墨烯对亚甲基蓝的吸附。结果表明,吸附速率对亚甲基蓝染料的初始浓度较为敏感,主要为化学吸附。吸附过程符合Langmuir等温吸附模型,说明这种吸附为单层表面吸附。

关键词 复合材料吸附中空氧化石墨烯磁性亚甲基蓝    
Abstract

The Fe3O4 coated polystyrene microsphere (PS), namely Fe3O4@PSwas firstly fabricated by co-precipitation method with FeCl2·6H2O and FeCl3 as raw material, and PS microsphere as tempelate. Then Fe3O4@PS was immersed in toluene solution for removing the PS template. Next, the hollow Fe3O4 microsphere was coated with graphene oxide sheets under sonication to produce the hollow magnetic graphene oxide (HMGO). Subsequently, the absorption performance of the HMGO for methylene blue (MB) was assessed in an artificial waste MB solution. Results verified that the adsorption process reach to equilibrium at 55℃ after 60 min. The maximum adsorption capacity of MB on HMGO is 349.85 mg·g-1. The adsorbent shows good stability and reusability, after 8 times recycling the adsorption rate is still higher than 80%. The adsorption process of MB on HMGO can be well fitted by Pseudo-second-order kinetic model and the adsorption rate is sensitive to the initial concentration. The adsorption isotherm conforms to the Langmuir isotherm model, and the adsorption process is a single-layer surface adsorption.

Key wordscomposite    adsorption    hollow graphene oxide    magnetic    methylene blue
收稿日期: 2021-01-04     
ZTFLH:  X703.5  
基金资助:福建省科技创新计划(2012H6008);福州市科技创新计划(2013-G-92)
作者简介: 阙爱珍,女,1996年生,硕士生
图1  HMGO吸附MB前后以及磁铁分离HMGO效果
图2  Fe3O4、GO和HMGO的红外光谱
图3  GO,Fe3O4和HMGO的X射线衍射谱
图4  PS微球、Fe3O4、Fe3O4@PS和HMGO的扫描电镜照片以及HMGO的EDS图
图5  PS微球、Fe3O4和HMGO的粒径分布
图6  吸附时间对亚甲基蓝吸附的影响
图7  吸附动力学曲线拟合
Pseudo-first-orderPseudo-second-order
k1/min-1qe/mg·g-1R12k2 /g·mg-1·min-1qe/mg·g-1R22
0.025197.310.95450.0002347.220.996
表1  HMGO的准一级动力学和准二级动力学参数
图8  亚甲基蓝初始浓度对亚甲基蓝吸附的影响
图9  吸附等温线曲线的拟合
Langmuir adsorption isotherm equationFreundlich adsorption isotherm equation
kL/L·g-1qm/mg·g-1RL2kf1/nRF2
2.89352.110.9999199.140.190.6927
表2  HMGO的Langmuir和Freundlich吸附模型参数
图10  反应温度对亚甲基蓝吸附的影响
图11  吸附热力学曲线拟合
T/KΔH/kJ·mol-1ΔS/J·mol-1·K-1ΔG/kJ·mol-1
288.1550.63239.54-18.39
298.15-20.79
308.15-23.18
318.15-25.58
328.15-27.85
表3  HMGO的吸附热力学参数
图12  重复使用次数对亚甲基蓝吸附的影响
1 Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of methylene blue on low-cost adsorbents: A review [J]. J. Hazard. Mater., 2010, 177(1-3): 70
2 Guo J Y,Gan P F,Chen C,et al. Preparation of magnetic chitosan and its application in the treatment of methylene blue wastewater [J]. Chin. Environ. Science., 2019, 39(6): 2422
2 郭俊元, 甘鹏飞, 陈诚等. 磁性壳聚糖的制备及处理亚甲基蓝废水 [J]. 中国环境科学, 2019, 39(6): 2422
3 Crini G, Lichtfouse E, Wilson L D, et al. Conventional and non-conventional adsorbents for wastewater treatment [J]. Environ. Chem. Lett., 2019, 17:195
4 Yao Y J, Xu F F, Chen M, et al. Adsorption behavior of methylene blue on carbon nanotubes [J]. Bioresource Technol., 2010,101(9): 3040
5 Zhou L, Gao C, Xu W J. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs [J]. Acs. Appl. Mater. Inter., 2010, 2(5): 1483
6 Altenor S, Carene B, Emmanuel E, et al. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation [J]. J. Hazard. Mater., 2009, 165(1-3): 1029
7 Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles [J]. Dyes. Pigments., 2004, 61(1): 93
8 Gupta V K, Suhas. Application of low-cost adsorbents for dye removal-A review [J]. J. Environ. Manage., 2009, 90(8): 2313
9 Lu N, He G, Liu J X, et al. Combustion synthesis of graphene for water treatment [J]. Ceram. Int., 2018, 44(2): 2463
10 Xiao W Q,Huang H,Chen L, et al. Preparation and heat treatment of nanocomposites of PBT/graphene oxide [J]. Chin. J. Mater. Res., 2019, 33(02): 95
10 肖文强, 黄欢, 陈林等. PBT/氧化石墨烯纳米复合材料的制备及热处理 [J]. 材料研究学报, 2019, 33(02): 95
11 Zhao W Y, Wang Z X,Zheng Y Y, et al. Electrochemical performance of NiS2/3D porous reduce graphene oxide composite as electrode material for supercapacitors [J]. Acta Mater. Compositae Sin. [J]., 2020, 37(2): 422
11 赵文誉, 王振祥, 郑玉婴等. NiS/三维多孔石墨烯复合材料作为超级电容器电极材料的电化学性能 [J]. 复合材料学报, 2020, 37(2): 422
12 Li Y H, Du Q J, Liu T H, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes [J]. Chem. Eng. Res. Des., 2013, 91(2): 361
13 Wu Y, Luo H J, Wang H, et al. Adsorption properties of modified graphene for methylene blue removal from wastewater [J]. Environ. Sci., 2013, 34(11): 4333
13 吴艳, 罗汉金, 王侯等. 改性石墨烯对水中亚甲基蓝的吸附性能研究 [J]. 环境科学, 2013, 34(11): 4333
14 Yang S T, Chen S, Chang Y, et al. Removal of methylene blue from aqueous solution by graphene oxide [J]. J. Colloid. Interf. Sci., 2011, 359(1): 24
15 Balkız G, Pingo E, Kahya N, et al. Graphene oxide/alginate quasi-cryogels for removal of methylene blue [J]. Water. Air. Soil. Pollut., 2018, 229: 131
16 Li R R, Huang H, Dong X L,et al. Adsorption performance of methylene blue onto nanoparticles of carbon-encapsulated magnetic nickel [J]. Chin. J. Mater. Res., 2015, 29(09): 663
16 李冉冉, 黄昊, 董星龙等. 碳包覆磁性镍纳米粒子对亚甲基蓝的吸附性能 [J]. 材料研究学报, 2015, 29(09): 663
17 Adel M, Ahmed M A, Mohamed A A. Synthesis and characterization of magnetically separable and recyclable crumbled MgFe2O4/reduced graphene oxide nanoparticles for removal of methylene blue dye from aqueous solutions [J]. J. Phys. Chem. Solids., 2021, 149: 109760
18 Othman N H, Alias N H, Shahruddin M Z, et al. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide [J]. J. Environ. Chem. Eng., 2018, 6(2): 2803
19 Gu F B, Liang M, Dong M H, et al. Multifunctional sandwich-like mesoporous silica-Fe3O4-graphene oxide nanocomposites for removal of methylene blue from water [J]. Rsc. Adv., 2015, 5(50): 39964
20 Hosseinzadeh H, Hosseinzadeh S, Pashaei S. Fabrication of novel magnetic graphene oxide nanocomposites for selective adsorption of mercury from aqueous solutions [J]. Environ. Sci. Pollut. Res., 2019, 26: 26807
21 Sun Z W, Srinivasakannan C, Liang J S, et al. Preparation of hierarchical magnesium silicate with excellent adsorption capacity [J]. Ceram. Int., 2019, 45(4): 4590
22 Chen P, Cao Z F, Wen X, et al. In situ nano-silicate functionalized graphene oxide composites to improve MB removal [J]. J. Taiwan. Inst. Chem. Eng., 2017, 81: 87
23 Dai H J, Huang Y, Huang H H,et al. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue [J]. Carbohyd. Polym., 2018, 185: 1
24 Pan Y Y. The modification of magnetic chitosan and the research on simulated wastewater [D]. Taiyuan:North University of China, 2013
24 潘媛媛.磁性壳聚糖的改性及其对模拟废水的处理研究 [D]. 太原: 中北大学, 2013
25 Xu J, Li S S, Wang F, et al. Efficient and enhanced adsorption of methylene blue on triethanolamine-modified graphene oxide [J]. J. Chem. Eng. Data., 2019, 64(4): 1816
26 Sarkar C, Basu J K, Samanta A N. Removal of Ni2+ ion from waste water by geopolymeric adsorbent derived from LD slag [J]. J. Water. Process. Eng., 2017, 17: 237
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.